Pigeonhole and Inclusion-Exclusion Principles

1 Pigeonhole principle

This is the observation that, if n objects have to be placed in less than n sets, at least one of the
sets will contain two objects or more. More generally, if n objects have to be placed in k sets,
at least one of the sets will contain [n/k} objects or more. Here are some famous theorems
where this principle is applied.

Theorem 1 (Dirichlet). If z is an irrational number, then there are infinitely many pairs (p, ¢)
of integers such that [z — p/q| < 1/¢%.

Proof. Suppose on the contrary that the set S of (p,q) € Z x N such that |z — p/g| < 1/¢% is
finite. Define

£:= min |z— > 0.
(pq)erNl p/ql

Now consider an integer @ > 1/e. The @ + 1 fractional parts {gz}, ¢ € [0 : @], belong to [0,1),
which is the union of the @ intervals [¢/Q, (¢ + 1)/Q), £ € [0,@ — 1]. Therefore, there exist
q.q" € [0: Q] with ¢ > ¢", say, such that {¢'z} and {¢"z} belong to the same interval, hence
Hd'z} — {¢"z}| < 1/Q. This reads

fr fi 1
|z = g'z] - (¢"z — ¢"2])| = (¢ - ¢")z - (lg'=] ~ l¢"=])| < o
Setting ¢g:=¢ —¢" € [1: Q) and p := |¢'z| — |¢"x] € Z, we derive
| pl_ 1 _[ v
v ‘ < {1/@ <e.
This shows that (p,¢) € S and that |z — p/¢| < e, which is a contradiction. O

Theorem 2 (Erdés-Szekeres). Every sequence of (m — 1)(n — 1) + 1 distinct real numbers
admits either an increasing subsequence of length m or a decreasing subsequence of length n.

Proof. Suppose that the sequence — denote it by (wi)ig1:(m—1)(n—1)+1] — has no increasing
subsequence of length m. This means that

Se:={t € {1: (m—1)(n~1)+1] : the largest increasing subsequence starting at ¢ has length &}

is nonempty only for £ = 1,2,...,m — 1. Since every i € [l : (m — 1){n — 1) + 1] belongs
to one of 51, 853,...,5,—1, there is an Sy, with size > n. Consider i, < i < --+ < 4, in S.
For j € [L : n], notice that an increasing subsequence of length & starts at i;,; and that no
increasing sequence of length % + 1 starts at ¢;, therefore we must have Ui; > Ui;,,- This gives
a decreasing subsequence of length n, namely {u; i )il _ a




2 Inclusion-exclusion principle

The inclusion-exclusion principle generalizes the formulas

|S1U S2| = |81] + 82| — |S1. N Sy,
151 U85 U S3f = | S1] + [82| + |S3] — [S11 8a] — [S1 N 83| — |S N S3| + 181N S2 N S3). I

)
)5 v,
| 6

. ,
[S1U-US = (-0 Y IS, NN S,
r=1

1< < <ip<n

Theorem 3. Given finite sets 5, 55,...,S,,

Remark. Finite sets can be replaced by measurable sets, say, with | - | meaning measure.

Proof. We could proceed by induction on n. Here is another instructive argument based on
characteristic functions. Recall first that, for two sets A and B, one has y 4, = XA+XB—XANB
and xang = xaxs. It follows that 1 — x4np5 = (1 — x4)(1 — xB). We then derive

1 = xsusp0-08, (%) = (1 = x5, (2))(1 — x5o(2)) - (1 = x5, (2))

=1+ Z(“‘I)r Z X8 (‘T)XS'iz (:L') T XS (:L‘)

1<iy <<ir <

n
=1+ Z(—l)r Z Xgiznsizn...ngir (.’.E) ,
r=1. o

1< <o <ip <

It now suffices to sum over all possible z’s. _ O

As an application, we count the derangements of [1 : 7], i.e., the permutations of {1 : n] with
no fixed points.

Theorem 4., The number of derangements of [1 : n] is

n
—ny (=1)"
Dn =nl 2 ~T'_

Remark. The proportion of derangements among all permutations approaches 1 /e == 0.3679
when n grows, since Dy, /nl — 302 (—1)"/r! = e~ L. '
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Proof. Let P be the set of permutations of (1 : n] and D the set of derangements of [1 : n]. For
each i € [1: n], we consider the set P; of o € P such that o(i) = ¢. Since a permutation is not a
derangement iff it belongs to one of the P;, we have P \ D = | JI_; P;. Therefore,

n

|P\Dl = Z(_l)'r_l Z P, ﬂ"'npirl_'

r=1 1<ig < e <ip <

Note that |P \ D| = |P| — |D| = n! — D, that there are :’ ways of choosing (i1 < --+ < 4;)in

[1 : 7], and that [P;, N---NP;| = (n —r)! since a permutation of [1 : n] that fixes i,. .., 4 is
equivalent to a permutation of [1 : n]\ {i1,...,%,}. This yields
n
1 _ _n!
nl — Dy, = =2 Z( 1) ( )(n—T)I 1;(_1), g
It suffices to rearrange the latter to obtain the announced formula. O

3 Exercises

Ex.1: What is the maximum size of a subset of {3,11,19,27,...,139, 147, 155} for which no two
elements add up to 158?

Ex.2: Prove that at any party there are two guests with the same number of friends present.
Ex.3: How many numbers between 1 and 2012 (inclusive) are not divisible by 2, 3, 5, and 77

Ex.4: Let S be a subset of [1 : 100] of size 10. Show that there are two subsets of S for which
the sums of the elements are the same.

Ex.5: Calculate the generating function of the sequence (D,,/n!), i.e., the formal power series
D
2
n=0 e

Ex.6: Show that, if a collar made of n pearls has more than (k— 1)n/k white pearls, then there
is a string of k consecutive white pearls.

Ex.7: Given real numbers z1,zy, ..., z,, prove that
k(3
r—1 :
max{zy,...,Tn} = E (-1) Z min{zi,, ..., %,
r=1 1<i < <irEn

Ex.8: Prove that, in a party with »n guests, one can find two guests such that at least half of
the remaining guests know either both or neither of them.

Ex.9: How many matrices in {0, 1}™*" have no row and no column consisting only of zeros?

Ex.10: Show that the number of permutations ¢ of [1 : n] with ¢(i + 1) 5 o(¢) for all i € [1 : n]
equals D, + D, _1.




Sequences and Series

1 Some convergence criteria

For real-valued sequences,
¢ If a nondecreasing sequence is bounded above, then it is convergent;
e A sequence (un)n>0 is convergent if and only if it is a Cauchy sequence, i.e.,

Ve, dng > 0:Yn > ne,Vp 2 0, [untp — un| < e

The counterparts for real-valued series are:

n [o,0]
e If uy > 0 for all k and if Z ug < U for some U > 0 and all n, then Z UL converges;

k=0 k=0
[Consequence: if 0 < ux < v and v converges, then ug converges, too.]
k Uk k

oo
e A series Z uy, converges if and only if
k=0 ntp
Ve>0,3ng>0:Vn>mne,Vp >0, Zuk < e.
k=n

[Consequence: If ), |ug| converges (absolute convergence), then ), u;, converges, too.]

The latter comparison criterion is useful when classical series are at our disposal, such as:

. 1 .
E z" converges iff |z] < 1, E — converges iff a > 1,
na
n n

1
1 ——— 1 .
o) _S_n o () converges iffa > 1

From there, we can deduce the ratio test: if a positive sequence satisfies upt1/un =P
with 0 < p < 1, then Y, ux converges. Once can also prove, for instance, that the series
S~ 1/(n(n+1)) converges by remarking that 0 < 1/(n(n+1)) < 1/n? and that 5_ 1/n? converges,
which implies that 3" 1/(n(n + 1)) converges, too. To find the exact value of the sum, we
interpret it as a telescoping sum, i.e.,

ey i-stim S (- G- (-

n=1



Another useful technique is the summation by parts, consisting of the following manipulation:
given (ay)r>1 and (bg)r>1, define Ag =0, A, = Y _; ai for n > 1, and write

n n n n n n—1
Z agby = Z(Ak —Ap_1)by = ZAkbk - ZAk——lbk = ZAkbk - Apbpp
k=1 k=1 k=1 P k=1 k=0
n—1
= Anbn + Y Ap(b — by1).
=1

2 Power series

A power series is a series of the type Y u,2". Here are a few classical ones, together with
their regions of absolute convergence in the complex plane:

1 o0
(2) 1—=Zzn=1+z+z2+z3---, |z] < 1
—Z n=0
1 o0
3) -(T—:—Z—S-Z-=Z(n+l)zn=1+2z+3z2+4z3---, |z <1
n=0
o 2 3 4
1., z z z
NN L, 1
4) In(1-2) ;nz 2= 3 y , |z] <
> a(a=1)-- (@a—n+1 -1 ~1)(a—2
(5) (1+z)“=za(a D '(a nt )zn=1+az+a(a )Z2+a(a )(a )z3---, 2] <1
= n! 2 6
=1 1 1
— o — >.2 i 11
(6) exp(z) nzz;)n!z 1+z+22 +62 , all z
— 1 1 1
— 2n _ 24— 4. 11
(7)  cosh(z) ;::0(271)!2 1+2z +24z all z
- 1 1 1
: — 241 e T : S 11
(8) sinh(z) 7;)(2n+1)!z z—l—6z + 130° all z
o0
(=1)" o Lo 14
= =1 = —4. .. il
9  cos(z) ; (2n)!z 57 +24z all z
o0
: _ (_l)n 2n+1 __ 1 3 1 5 1
10) 31n(m)—g(2n+l)!z =z =52 + 1557 all 2
Some of these equalities may remain valid at particular points on the boundary of the region
of absolute convergence. For instance, (4) holds for z = —1, and it then reads
o0
1, ., 1101
ln(2)-—;n( Nr=l-s4g—7




3 Progression and sums

The fundamental identity (2) is a consequence of the general expression for the sum of a
geometric progression. A geometric progression is a sequence (ug)x>0 obeying the recurrence
relation ugy; = rug for some r € C and all £ > 0. Alternatively, it can be viewed as the
sequence defined by u;, = r¥ug for all £ > 0. The sum of its first n 4 1 terms is derived from

the identity
_ an+l
i { L= ier,

k=0 n—|—1 ifr=1.

An arithmetic progression is a sequence (ug)x>o obeying the recurrence relation uy;; = ug +d
for some d € C and all £ > 0. Alternatively, it can be viewed as the sequence defined by
ug = ug + kd for all £ > 0. The sum of its first n + 1 terms is derived from the identity

n
Z ko n(n + 1)
k=1
"\ ~m
Here is a simple pictorial explanation of ki - NA
] m l
m
+ = e
| (4*7.'('" M + ("‘k"'l&) = M (-

Let us also point out the values of the sums of the first squares and of the ﬁ{st cubes:

Zk2 n(n+1)(2n + 1)
6 ’

zi:kg, _ (n n2+1))2.
| et

s 20:__,1&‘1\ Indang,s
) 39

e A A b ks b

2«‘«(‘*1«--4—[) /‘-L
AA(‘“%)'*AZ: /‘3




4 Exercises

Ex.1:

Ex.2:

Ex.3:

Ex.4:

Ex.5:

Ex.6:

Ex.7:

Ex.8:

Ex.9:

Ex.10:

Ex.11:

Given ¢t > 0, consider the sequence defined recursively by zo > 0 and
z -1 + t >0
— e €T — .
n+1 2 n Tn, ) n

Does the sequence (z,,)r,>0 converge, and if so what is the value of its limit?

1
Let (un)n>1 be a convergent sequence. Prove that the Cesaro mean — Z U, converges

k=0
to the same limit as the original sequence when n — co.

Prove the assertion (1).

. 21 7? = 1
Given the value ; =g find the values of nz:% m
State the power series expansions of 1/(1 — z), 1/(1 + 2)?, In(1 + z), and v/1 + z. Derive
(3) and (4) from (2) by formal differentiation and integration. Show that (5) reduces to
the binomial theorem when a is an integer. Derive (7), (8), (9), and (10) from (6) using
the expressions of the (hyperbolic) trigonometric functions in terms of the exponential
function.

(e}
1
Prove that the series Z \/_ converges and find its value.

E(k+1)+kvE+1
Evaluate the sums Z coS ( ) and Z sin < )

k=0 k=0

Consider a sequence (ux)r>o obeying the recurrence relation uxy1 = ruy + d for some
r,d € C and all £ > 0. Find the explicit form for the general term u; and deduce an
expression for the sum >, uy.

Consider the power series expansmn
anz"
1— 2z 1-2z-22 Z i

Prove that, for all n > 0, there exists m > 0 such that a2 + afl +1= Qm.

Consider partitioning the natural numbers into the sets {1}, {2, 3}, {4, 5,6}, {7, 8,9, 10},
etc. Find a simple expression for the sum of the integers in the nth set.

If 3" a, is a convergent series of nonnegative terms, prove that > t/ajaz~ - a, is also
convergent.



Induction and Recurrence

1 Mathematical induction

The principle of mathematical induction states that if an assertion P, is true for an integer
n = ng (the base case) and if P, ; is true as soon as P, is true (the inductive step), then the
assertion P, is true for all integers n > ny. Equivalently, if an assertion P, is true for an
integer n = ng and if Py, is true as soon as Py, Pn—1,. .., Pn, are true, then the assertion P,
is true for all integers n > ng. To see how the first version implies the second one, apply it to
P}, := (Pp, and Ppy41 and ... and Py,). It is advisable to systematically work with the second
version. Sometimes, several base cases may need to be verified (see Section 2, for instance).

The validity of the principle of mathematical induction is a consequence of the well-ordering
principle: any nonempty set of nonnegative integers has a minimal element. Indeed, consider
the set § := {n > ny : P, is wrong}. If S was nonempty, it would have a minimal element
n1, and necessarily n; > ng (by the base case). The minimality implies that n; — 1 ¢ S, i.e.,
Pn,—1 is true. But then P, is also true (by the inductive step), meaning that n; ¢ S. Thisis a
contradiction. Hence S is empty, or in other words P, is true for all n > no.

2 Recurrence relation

Mathematical induction is often used to establish rigorously a statement guessed from the
first few cases (or given by the question). For instance, consider a sequence (u,),>1 given by
the values u1,uy, ..., u, and the p-term recurrence relation uyip = f(Untp—1,---,Un+1, un) for
n > 1. One can compute in turn u,1, next up,g, then upy, 3, etc. If we see a pattern emerging
for a closed-form formula, we can justify it using mathematical induction. We have already
seen arithmetic and geometric progressions as examples of sequences defined by one-term
recurrence relations. We now consider the particular case of a linear function f, i.e.,

Uptp = Cp—1Untp—1 + *** + CLUpt1 + Colin, co # 0.

If the polynomial p(z) := 2# — cp_lzf"‘1 — ... —c12 — ¢g has distinct roots r1, 7o, ..., 7, (the case
of repeated roots can be treated, too), then it is proved below that the general term is given by

1) Up = ouT] +oory + -+ aprg for alln > 1,

where the p coefficients a1, oo, . . ., oy are uniquely determined by the p values of uy, us, . . ., up.
We proceed by induction on n. The p base cases hold since a1, as, ..., oy are determined pre-
cisely for this purpose. Assuming that (1) holds up to n > 1, let us now prove that it also holds
for n + 1. Using the recurrence relation, the induction hypothesis forn—1,n—2,...,n—p+1,




and the fact that 7";-’ = cp_lr;’_l + -+ +cirj +co for all j € [1: p|, we derive

p

Y4 D D ¥4 p
_ _ n—p+k _ n—p+1 k-1 _ —p+1 p
Unt1= Y Choilnptk = D Cho1 P ayry PTF = d TayrF P gkt = E
J J J
k=1 k=1 j=1 j=1 k=1

p
. a1
= oyrt
j=1

This shows that (1) holds for n + 1. The principle of mathematical induction allows us to
conclude that (1) holds for all n > 1.

3 An application: Jensen’s inequality

A function ¢ defined on an interval I is called convex if

e((1-t)z+tz') < (1 —t)p(z) +tp(z’)  forallz,2’ € Iand all t € [0, 1].

é-rl‘fcm&\’(m')
(((("' a-tba’)

' % é—ﬂm-\' b’ ry;/

Given a convex function ¢ on an interval I, Jensen’s inequality says that the image of a convex
combination is smaller than or equal to the convex combination of the images. Precisely, if
Z1,...,2n € I and if ¢1,...,t, > O satisfy t; + --- + £,, then

(2) w(thxj) < thgo(mj). i
J=1 Jj=1

This can be proved by induction on n. Indeed, in the base case n = 1, (2) holds with equality.
Let us now assume that (2) holds up to an integer n—1, n > 2, and let us prove that it also holds
for the integer n. To this end, consider z1,...,z, € T and ¢y,...,t, > Owitht; +---+t, = 1. If
t, = 1, then all other ¢; are zero, and (2) holds with equality. So we may assume that ¢, < 1,
and we set t; :=t;/(1 — tn) 2 0for j € [1 : n — 1]. Notice that >~ 11t3 (i1 t)/ (1 —ts) = L.
Applying the defining property of a convex function and then the induction hypothesis, we get

n n—1 n—1
<p( thmj) = go( E tjz; + tnmn) = cp((l —tn) Z t;-ﬂcj + tnmn>
j=1 j=1 j=1

n—1 n—1
<(1- tn)go(th-a:j) + tno(zn) < (1 —ty) thw (z5) + tnep(zn) thcp ;).
j=1 ji=1

This shows that (2) holds for n. The principle of mathematical induction allows us to conclude
that (1) holds for all n > 1.



4 Exercises

Ex.1:

Ex.2:
Ex.3:
Ex.4:

Ex.5:

Ex.6:

Ex.7:

Ex.8:

Ex.9:

Ex.10:

Ex.11:

Ex.12:

Prove that, for any integer n > 1,

~ 12— n(n+1)(2n + 1)'
2 G

For n > 1, prove that n(n — 1)(n + 1)(3n + 2) is divisible by 24.
Find the number R(n) of regions in which the plane can be divided by n straight lines.

The Fibonacci sequence is defined by Fy = 0, Fy = 1, and F, 1 = F, + Fy_1 forn > 1.
Find a closed-form formula for F), involving the golden ration ¢ := (1 + v/5)/2.

Guess a formula for the sum 1% 4+ 2 + ... 4 n?%, and then provide a rigorous proof (Hint:
the answer is a polynomial in n, it has degree 5, and it is divisible by n(n + 1)(2n + 1)).

Given r € R, consider the two-term recurrence relation u,19 = 2ru, 1 — r?u, (note that
the polynomial p(z) = 22 — 2rz + r2 has a double root at ). Prove that u, = or™ + fnr"
for all n > 1, where the coefficients o, 8 are uniquely determined by the values of u1, u,.

Find a formula for the general term of the sequence defined by u; = 3 and the recurrence
relation up41 = up(u, + 2) forn > 1.

For n > 2, prove that any 2n points joined by at least n2 + 1 segments contain at least
one triangle. Show that this is not true if the number of segments is n?.

For integers n,d > 0, prove the relation

O+ () (1) (59- (1),

Consider a 2™ x 2" checkerboard from which an arbitrary square has been removed.
Can it be paved with polyominos, that is L-shaped tiles covering three squares each?

In Section 2, we have used the fact that if r1,...,r, are distinct nonzero numbers, then
the system of p linear equations ofr} + - -- + apTy = U, n € [1: p], in the p unknowns
a1,...,0p has a unique solution. In linear algebra terms, this condition is equivalent to
the invertibility of the matrix whose (7, j)th entry is r; Establish this invertibility by

proving the formula for the Vandermonde determinant, i.e.,

1 9 e Tp
. . = II @5—ro.
Lo | asi<isn
p— p— p—
T'l 7‘2 e T’p

Given a convex function ¢ on an interval I and given zo € I, prove that the slope
x €I (f(x)— f(z0))/(z — zo) is an increasing function of z € I.



Generating Functions

1 Definition and first examples

Generating functions offer a convenient way to carry the totality of the information about a
sequence in a condensed form. Precisely, the (ordinary) generating function of the sequence
(an)n>0 is defined as the formal power series

o
E anz".
n=0

For instance, the power series of the constant sequence (1),>0is > .-, 2" = 1/(1 — z). From

there, k successive differentiations lead to the generating of the sequence (("zk)

() -

n=0

n>0

A more striking illustration concerns the number p, of partitions of an integer n, i.e., the
number of ways to write it as the sum of an nondecreasing sequence. For instance, ps = 5,
since 4 can be writtenas 1+1+1+1=1+1+2=1+3 = 2+ 2 = 4. Although there is no
simple form for the sequence (p,), its generating function admits a nice expression (uncovered
by Euler), namely

00 00 1
nz:opnzn:;;[ll_zk-

This can be understood by looking at the coefficient of 2" in the right-hand side expressed as
I+z+224+ - )A+2+24 4+ A +24+5+)-.
Indeed, the coefficient of 2" is the number of ways to write
n=n;+2ny+3nz+---=1+---+1)+2+--+2)+B+---+3)+---,

which is precisely p,.

2 Two classics: Fibonaccel and Catalan

Sometimes, the cumbersome determination of the general term of a sequence can be shortcut
by an argument exploiting generating functions. As a first example, consider the Fibonacci
numbers defined by Fy =1, F; =1, and

(1) Fn+2 = Fn+1 + Fn for n > 0.

Let f(z) :== Yo%, F,z" denote the generating function of (F,),>o. Multiplying (I) by 2" "2 and
summing over all n > 0, we obtain
F(2) = Fo— Fiz = 2f(2) — Fos + 220(2),  ie,  f(2) =

z
1—z—22



Since 1 — z — 22 = (1 — ¢2)(1 + z/¢), where ¢ = (1 + 1/5)/2, we derive the partial fraction
decomposition (remember to multiply through by 1 — ¢z and to take the value z = 1/¢, next
to multiply through by 1 + z/¢ and to take the value z = —¢)

z _1/V56 1/v5
1—z—22 1—¢z 1+2z/¢

Calling upon known power series expansions, we deduce

_ LS LS g = SO CL9)"
By identifying the coefficients of 2", we conclude that
9" —(=1/9)"
" :

As a second example, consider the Catalan numbers C,, defined (among many alternative
definitions) as the numbers of binary trees that possess n branching nodes (hence n+1 leaves).
Starting from C( = 1, they obey the recurrence relation

Fn =

(2) Chi1 = Z C;Cj, n > 0.

i+j=n
This translates the fact that a binary tree with n + 1 branching nodes is decomposed, when
the root is removed, as two binary trees with i and j branching nodes satisfying i + j = n.
Let f(z) := > o7, Cp2" be the generating function of the Catalan numbers. Multiplying (2) by
2"*! and summing over all n > 0 leads to

flz)—1= i Z CiCy | 2" =2 (i Cizi) iCjzj = 2f(2)%
n=0 \i+j=n i=0 5=0

Solving this quadratic equation in f(z) gives (note that the second solution is rejected in view

of its value at z = 0)
1—+v1—14z
[ =%

Calling upon known power series expansions, we deduce

£lz) = % (‘Z (1/2)(—1/2)(—3/3 - (1/2—n+ 1)(_4z)n> _ 2271—11 "3 ~Té‘(2n -3) 1
n=1 ' n—1 .
a3 2n—1) , ~=1:2:3--2n-1)-(2n) ,, ~ 1 [2n\ ,
_7;02 (n+1)n! - _T;O (n+1)n!n! : _T;)n+1<n>z'

By identifying the coefficients of 2", we conclude that

C - 1 <2n>
n+1l\n

2




3 Stirling numbers

The Stirling numbers of the second kind, denoted {}}, count the number of ways to partition
1 : n] into k nonempty blocks. For instance, {3} = 6, since {1,2,3,4} can be partitioned as
{1yu{2}u{3,4}, {1} U {3} U{2,4}, {1} U {4} U {2,3}, {2} U {3} U {1,4}, {2} U {4} U {1,3}, and
{3} U {4} U {1,2}. Note that {}} = 0 for ¥ > n and for k¥ < 0 (unless n = 0, in which case
the convention {8} = 1 is used). The Stirling numbers of the second kind obey the recurrence
relation

SURKNG!

This translates the fact that, when partitioning [1 : n + 1] into k blocks, the element n + 1
either forms a block on its own, leading to k — 1 blocks that partition [1 : n], or it joins one of k
blocks that partition [1 : n]. For k > 0, consider the generating function fi(z PR (LS
With k& > 1, multiplying (3) by 2"*! and summing over all n > 0 leads to

() = 2fea (D) Fhafe(a), he,  fil2) = e (2).

In view of fy(z) = 1, we obtain by immediate induction

Sk

The partial fraction decomposition of the latter is

f— 01 .« .. Ck
1x(2) 1—z +1—kz'

We have ¢y = lim,, o fx(2) = (—1)*/k! and, for j € [1 : k],

(1/5)* ()
Q=17 (- G-D/DA-G+ D/ A—kfj) M-

cj = [fr(2)(1 = j2)]|2=1/j =

In conjunction with

k 0o oo k
=3 6> Gt =D et

Mw

fe(z) =
j=0 1_]Z 7=0 n=0 n=0 j=0
we conclude that
k k j k k j
- -n
== S ()
7=0 7=0

The Stirling numbers of the first kind, denoted [}],
with k cycles. For instance, [5] = 3, since (1)(32), (
tions of {1,2,3} with two cycles. Note that [}}] = 0

count the number of partitions of [1 : n|
)(13), and (3)(12) are the three permuta-
for £ > n and for £ < 0 (unless n = 0, in

3



which case the convention [8] = 1 is used). The Stirling numbers of the first kind obey the
recurrence relation

n+1 n n
4) [ i ]_[k‘—l]—kn{k}
This translates the fact that, when considering a partition of [1 : n + 1] with k cycles, the
element n + 1 either forms a cycle on its own, leading to a permutation of [1 : n] with £ — 1

cycles, or it incorporates (at one of n possible positions) one of k£ cycles making a partition of
[1:n]. For k > 0, consider now the exponential generating function of ([Z] )n>0 given by

fu(2) = i [Z} %Y,L

n—

Multiplying (4) by 2" /n! and summing over all n > 0 leads to

f1(2) = fus1(2) + 2f1(2),  ie.,  fi(z) = J‘i—_l?

In view of fy(z) = 1, we obtain by immediate induction

(5) fr(z) = %lnlc < 1 ) )

1—2

4 Exercises

n—1
1- Zk:l ApGn—k
2

Ex.1: Find the sequence (a,)n>0 given by a9 = 1 and a,, = for n > 1.

Ex.2: Find the number of different ways a convex polygon with n + 2 sides can be cut into
triangles by connecting vertices with straight lines.

Ex.3: Prove that the number of partitions of an integer into odd positive integers equals the
number of its partitions into distinct positive integers.

Ex.4: It follows from the definition of the Stirling numbers of the first kind that )", _, m =nl.
Recover this fact from the expression (5) of the exponential generating function.

Ex.5: The positive differences of the four numbers 0,2, 5, 6 are the numbers 1,2, 3,4, 5, 6, each
taken exactly once. Prove that this phenomenon cannot occur if there are more than
four numbers.



Complex Analysis

1 The field of complex numbers

The set of complex numbers is denoted by C. The cartesian representation of z € Cis z = z+iy
with 7,y € R and i = —1. The real and imaginary parts of z are Re (z) = = and Im (z) = v,
respectively. Addition and multiplication of complex numbers (defined in a predictable way)
satisfy all the properties we would have expected — meaning that C is a field. The polar
representation of z € C is z = re” with »r > 0 and # € R. We call » = |z| the modulus
of 2 and # = arg(z) — not necessarily unique — an argument of z. We have r = /22 + y?
and tan(d) = y/x. De Moivre’s theorem states that (cos(0) + isin(f))” = cos(nf) + isin(nd),
or in simplified form, that (¢?)” = ¢ — this uses Euler formula ¢*¥ = cos(y) + isin(¢p).
Note also the identities cos(f) = (¢ 4 ¢7%)/2 and sin(f) = (e’ — e7%)/(2i). In general, one
has Re(2) = (2 4 2)/2, Im(2) = (2 — 2)/(2i), and |z|?> = 22z. Here z = x — iy = re”* is the
complex conjugate of z. The fundamental theorem of algebra ensures that every nonconstant
polynomial p(z) = a,z" + --- 4+ a1z + ap has a complex roots (in turn, that every polynomial
with complex coefficients has all its roots in C, i.e., C is algebraically closed).

A possible argument goes along those lines: pick zp € C such that |p(zp)| = min.cc |[p(z)| and
suppose |p(zp)| > 0; write that p equals its Taylor polynomial at zy, i.e., p(zo) + Z?:k bj(z— 20)?
where b, # 0; note that >0, ., b;1p7 < |belp® < |p(20)| for p > 0 sufficiently small; observe
that p(zg) + b.(z — 20)* describes k times the circle {|¢ — p(z0)| = |bx|p*} when z describes the
circle {|z — z9| = p}, hence there exists z; with |z; — 29| = p such that p(z) + br(z1 — 20)* lies
between 0 and p(zg), so that |p(zg) + br(21 — 20)¥| = |p(20)| — |bx|p"; derive a contradiction from

n n
p(z21)] < [p(20) + br(z1 — 20)*[ + | Y bi(z1 — 20)] < Ip(20)] — [bklo® + > 1bslp’ < Ip(z0)l-
j=k+1 j=k+1
Another possible argument involves Cauchy formula for holomorphic functions (see below):
suppose that p does not vanish on C, so that ¢ = 1/p is holomorphic on C; for R > 0 sufficiently
large to have |p(2)| > (lan| — lan-1|/|z] — -+ |aol/|z]")|z|™ > |an||z|™/2 Wwhenever |z| = R, a
contradiction follows from

1 q(z)dz 1 dz 1 2dz 2
— < — < o= T = — 0.
2mi J,=r 2 21 Jizi=r [2llp(2)| T 27 Jio =g |an|R™T |an|R™ R—o0

0 <1q(0)| =

2 Holomorphic functions

A function f defined on an open subset of C is differentiable at z; if one can make sense of

Fo) = tim T2 G0,

Z—20 zZ— 20

In particular, the limit is independent of how z is approached. If the function f of the variable

z = x + iy is differentiable at zg = z¢ + iy, then it satisfies the Cauchy—Riemann equations

ORe Olm ORe Olm
o o) = “g o) and 2 ) = - T ).

A converse holds provided the first-order partial derivatives are continuous.



A function f is called holomorphic at z if it is differentiable in some neighborhood of z; (i.e.,
whenever |z — zg| < r for some r > 0). Every power series > >~ jc,(z — 20)" with radius of
convergence R > 0 defines a holomorphic function on {|z — zy| < R}. Conversely, every holo-
morphic function is analytic, i.e., locally representable by powers series (hence holomorphic
and analytic are synonymous terms for complex functions). This fact shows that holomorphic
functions are infinitely differentiable and that their zeros are isolated (unless the function
vanishes everywhere).

Let G be a simply connected open region, let v be a simple closed path oriented counterclock-
wise and contained in G, and let zy € C be inside ~. If f is holomorphic in G, then it satisfies
Cauchy integral formulas

(1) jl{f(z)dz =0, J;(i)jj = 2mif(20), f (j(j);é; = 2mif"(z9) for all integer n > 0.
v v y

Cauchy formula implies Liouville’s theorem, which states that a function f holomorphic and
bounded on C is constant. Indeed, if v is the circular contour oriented counterclockwise with
center 0 and radius R large enough so that |z — zy|, |z — 21| > R/2, then, for all 2y, z; € C,

%ﬁf@(zlm - 21Z1>dz o ],{ (z,zﬁ)(fz)mdz

|20 — 21| [max(|f]) ,_ 4lzo — ;r|max([f])

- 2 J, (R/2? T R R—o0

[f(z0) = f(z1)] =

Cauchy formula also implies the maximum principle, which sates that, if f is homomorphic
on {|z — zg| < r}, then

Jmax f(2)] = Jmax |f(2)].

3 Meromorphic functions

If a function is holomorphic on an annulus A = {r < |z — 29| < R} for some R > r > 0, then f
has a unique Laurent expansion at zg of the form

o

f(z) = Z cn(z — 20)", z € A.

n=-—o00

A function f holomorphic in some punctured neighborhood of z; (i.e., an annulus where r = 0)
but not at zy is said to have an isolated singularity at z;. These can be of three different
kinds: removable singularity if ¢, = 0 for all n < 0 (for instance sin(z)/z at zyp = 0), poles if
¢c—m # 0 and ¢, = 0 for all n < —m, in which case m is called the order of the pole (for instance
rational functions at zy equal to a zero of the denominator), and essential singularities if
inf{n : ¢, # 0} = —oo. A function which is holomorphic in an open subset G of C except
possibly for poles is said to be meromorphic in G.

2



Let G be a a simply connected open region and let + be a simple closed path oriented counter-
clockwise and contained in G. Cauchy residue theorem states that, if f is meromorphic in G
with all its poles z1, ..., zy inside v, then

N
7{ f(z)dz = 27riZRes(f, 2k),
v k=1
where the residue Res(f,z;) of f at z; is defined as the coefficient c_; of (z — z;)~! in the
Laurent expansion of f at 2. It follows that, if f is holomorphic on G and does not vanish
f'(z)
f(z)
Rouché’s theorem which states that, if f and g are holomorphic in G and if | f(z)| > |g(z)| on 7,
then f and f + g have the same number of zeros (counting multiplicity) inside ~.

1
on ~, then the number of zeros of f inside v equals By 7{ dz. From here, we can deduce
T
v

4 Exercises

Ex.1: Find the set of all z € C" such that |z| + |z + 1| = 2.

Ex.2: Prove the identity

n

cos™(0) = 2in 3 <Z> cos((n — 2k)0).

k=0

Ex.3: Prove the necessity of the Cauchy—Riemann equations.

Ex.4: Establish the fundamental integral

% (z — 20)"dz = 0, %fn;é—l,
+(z0.r) 2 ifn = —1,

where (29, ) denotes the circular contour oriented counterclockwise with center zy and
radius r. Derive (informally) formulas (1) with v = ~(z, r) for analytic functions.

Ex.5: Use the maximum principle to prove Schwarz lemma: if f is holomorphic on {|z| = 1},

if M = E}ﬁ}f\f@)], and if f(0) = 0, then |f(2)| < M |z| whenever |z| < 1.

Ex.6: Use Cauchy residue theorem to evaluate

}{ dz
V14-,24’

where ~ is the semicircle {|z| = R,Im(z) > 0} U [-R, R] oriented counterclockwise.
Deduce the value of the integral
/ < dx
0 1 + l‘4 )




Classical Inequalities

Arithmetic-geometric means: The arithmetic mean (a + 0)/2 of two nonnegative numbers
a and b is always larger than or equal to its geometric mean v/ab, with equality if and only if
a = b. This can be seen from a + b — 2v/ab = (\/a — v/b)? > 0. The inequality generalizes to
more than two numbers: for all aq,ao,...,a, >0,

a +ag+--+an
n

> Yaras - ap,

with equality if and only if ay = a2 = --- = a,. A weighted version involves weights
w1, wa, . .., wy not all equal to 1/n. Namely, given w1y, we, ..., w, > 0 with wy +ws+- - -+w, = 1,
for all ay,ao,...,a, >0,

n n
(1) sz’az’ > Haiuia
i—1 i=1

with equality if and only if a1 = a3 = - - - = a,. This can be proved as follows.

Set G := alflaém --a¥ and A = wiay + weag + - - - + wpa,. Assume without loss of generality
that a; < as <--- < a,. Since a; < G < ay, we consider the integer k£ € [1 : n — 1] such that
ar < G < agy1. Then one can write

(2) Z /<—>dm+2wl/ (—) dx > 0.

=k+1
It follows that
a; n a; n
i dx i dx ) A a
Zw,/ > Zwi/g T e, So1zY =
=1 =1
as desired. Equality throughout means equality in (2),1.e.,a1 =---=a = ap41 = = a, = G.
Cauchy-Schwarz inequality: For all real numbers aq,...,a,,b1,...,by,
n ) n n
(S ah) < () (X8)
j=1 j=1 j=1
with equality if and only if a1, = b1, a9 = bo, ..., a, = b,. Cauchy—Schwarz inequality extends to

other situations, for instance we can replace sums by integrals and obtain, for all real-valued
functions f, g that are continuous on [a, b],

/f d:U § /f da: (/ab (x)de),

with equality if and only if f = g.



Holder inequality: This is a generalization of Cauchy—Schwarz inequality to all p, ¢ > 1 sat-
isfying 1/p + 1/q = 1 rather than p = ¢ = 2. It reads, for all real numbers ay,...,ay,b1,..., by,

S ot < (Slal) (i)
j=1 j=1 j=1

with equality if and only if a1 = b1,as = bs,...,a, = b,. The integral version reads, for all
real-valued functions f, g that are continuous on [a, 0],

[t < ([1sepa)”( [ )",

with equality if and only if f = g. For the proof, set v; = |a;|/A where A := (Z’;:l ]aj\p)l/p and
vj = |bj|/B where B := (37_, [b;]%) /4 Notice that is is enough to prove that S vy <1,
knowing that ui,...,up,v1,...,vn > 0, 320, u? =1,and 377, v;’ = 1. In turn, it is enough
to prove that wv < u?/p 4+ v?/q for all u,v > 0 — this is known as Young’s inequality. To
justify the latter, rewrite it as 1 < u?~ v~ /p + (p — D)u""0¥/ PV /p, or, with t := v~ 1o/ =1,
as t~=1) 4 (p — 1)t — 1 > 0. This can now be seen by studying the variations of the function
f(z):=2=®=Y 4 (p—1)z —1on [0,00).

Jensen inequality: Let ¢ be a convex function on an interval I — if ¢ is twice differentiable,
this means that ¢”(z) > 0 for all x € I. We have seen in ‘Induction and Recurrence’ that, if
T1,...,2, € Tand ifty,... ¢, > O satisfy t; +--- + ¢, =1, then

(3) w(ztﬂﬁj) <Y ().
j=1 j=1

The integral version of Jensen inequality reads

@ o( s [ 1) < 7 [ ot

for any continuous fonction f on [a, b].

Chebyshev inequality: If a1 < as < ---<a,and b; < by <---<b,ora; >as>---> a, and
by > by > -+ > by, then

I = (U w) (23
j=1 j=1 j=1

An easy argument consists in rearranging the inequality szzl(a,- —aj)(bi —b;) > 0. An

integral version of Chebyshev inequality reads, for functions f, g both nondecreasing on |[a, ]
or both nonincreasing on |[a, b],

— / ' fag(a)da > (= / bf(:r:)d:v) (= / bg(a:)dx)

2

(6)




Rearrangement inequality: If a; < as < --- < a,and by < by < --- < b,andif o is a
permutation of [1 : n], then

(7) D aibnsi—g < ajboy <D ajb
j=1 j=1 Jj=1

One can use the technique of summation by parts for the proof of the rightmost inequality
in (7), say. Setting By = 0, B}, = 0, and

J n
szzbo(i)v B;:Zbla j€[l:n],
=1 =1

we have B} < B; for j € [1:n — 1] and B, = B,,. It follows that

n
jZ:;aj ZCL]B Zaj = 1= anBy +Z _a]-l-l \/j_/

n—1 n
< anBy+) (aj—aj)Bj =) asbj,
j=1 j=1

where the last equality is just the reversal of the summation by parts process.

1 Exercises

Ex.1: Prove the inequality between the geometric and harmonic means, namely

n
< Yaias...ay,
/a1 +1/ag+---+1/ay, — 1 "

for all a1,a9,...,a, > 0.
Ex.2: For a continuous convex function ¢ on [a, b], deduce (4) from (3).
Ex.3: For a,b,c,d,... > 0, prove that
Va+b+ct+d+ - +vVb+te+d+ - +Vetd+ -+ >Va+4b+9c+16d + - -

Ex.4: Prove the leftmost inequality of (7).
Ex.5: Deduce (1) from Jensen inequality.
Ex.6: Prove Chebyshev inequality (5) using summation by parts.

Ex.7: Let P(z) be a polynomial with positive coefficients. Prove that P(1/x) > 1/P(x) for all
x > 0, provided P(1) > 1

Ex.8: If f is a continuous real-valued function on [0, 1]?, prove that

/ /fxyda: dy+/ /fa:ydy dm< //f:cyda:dy //fa:y dxdy.



Group Theory

1 Definitions and first examples

A group (G, %) is a set G equipped with an operation (z,y) € G x G — z xy € G satisfying the
axioms of

G — associativity: Vz,y,z € G,z * (y *x 2) = (z x y) * 2,

G, — existence of an identity: de € G :Vx € G,exxz =2 *e =z,

G3 — existence of inverses: Vo € G,32' € G:axx2' =2’ xx =e.

The axioms imply the uniqueness of an identity element and of inverses. One frequently uses
either the additive notation with + for *, 0 for the identity element, and —z for the inverse
(e.g. G = Z,Q,R,C) or the multiplicative notation with - (or nothing at all) for %, 1 for the
identity element, and 2! for the inverse (e.g. G = Q\ {0},R \ {0},C \ {0} ). Other examples
include (Z,,+) and (Z, \ {0}, -) when p is prime — see Modular Arithmetic . All the examples
mentioned so far were commutative (aka abelian) groups, meaning that z x y = y * = for all
z,y € G. The symmetric group S, i.e., the set of all permutations of [1 : n] equipped with the
operation of composition, is an example of a noncommutative group.

A subgroup of a group (G, ) is a subset H of G which forms a group when equipped with the
operation x. When H is a subset of G, it forms a subgroup of (G, *) if and only if

(1) zy leH whenever z,y € H.

For a subset X of a group G, the smallest subgroup of G containing X, i.e., the intersection of
all subgroups of G containing X, is called the subgroup generated by X. In particular, given
x € G, the subgroup generated by {z} (or equivalently by {z",n € Z}) is called the cyclic group
generated by .

2 Finite Groups

Given a group (G, x), if the set G is a finite, then its cardinality is called the order of G. The
order of the cyclic group generated by x € G is called the order of x — it is the smallest positive
integer m such that ™ = 1.

Lagrange theorem states that the order of any subgroup H of a group G divides the order of G
(in particular, a group of prime order has no nontrivial subgroups). The argument consists
in considering the sets xH := {xh,h € H}: two sets H and z'H are either disjoint or equal,
thus, they all have the same size m (which is the order of H), and if ¢ is the number of those
sets, one has n = gm.

Applying Lagrange theorem to cyclic subgroups generated by one element of a group G of
order n, one derives in particular that 2™ = 1 for every element € G . For instance, any
permutation o of [1 : n] satisfies g oo o --- 00 = id, since the order of S, is n!.

N—_—————

n!times



The product of groups {(Gy,*;),i € I} is the set [[,.; G; equipped with the operation x as
defined by

[16G: = {()ier,,zi € Gi for each i € T}, (i)ier * (Yi)ier = (@i *; Yi)iel-
iel
The structure theorem for finite abelian groups states that any finite abelian group is isomor-

phic to a product of cyclic groups of orders equal to powers of prime numbers. In other words,
if G is a finite abelian group of order n, then it can be written as

G=Z ky XL ky X+ XZ 1
ph1 ph2 plm s

where p1,...,p, are prime numbers, ki, ..., k,, are positive integers, and p’flpSQ R

Saying that groups (G, ) and (G’, x) are isomorphic means that there is an isomorphism from
G to G, i.e., f is a homomorphism from G to G’ (f(z xy) = f(z) * f(y) for all z,y € G) and that
f is invertible.

3 Exercises

Ex.1: Verify that the axioms G1, G2, and G3 imply the uniqueness of an identity element and
of inverses. Verify also that a subset H of a group G forms an subgroup of G iff (1) holds.

Ex.2: Verify that, if f is a homomorphism from a group (G, x) to another group (G’,*), then
f(lg) = 1grand f(z=!) = (f(z)) ! for all x € G. Verify that, if f is in addition invertible,
then its inverse f~! is automatically an homomorphism from (G’, x) to (G, ).

Ex.3: Let m be the order of an element = in a group G. Prove that m divides any positive
integer k such that z* = 1.

Ex.4: Prove that the elements of order < m in a group G form a subgroup of G.

Ex.5: Prove that
SLn(Z) :={A € Myxn(Z) : |det(A)| = 1}

of n x n matrices with integer entries and determinant equal to +1 is a group.

Ex.6: Let p and ¢ be the order of two elements = and y in a group G. Suppose that  and y
commute and that p and ¢ are relatively prime. Prove that the order of zy equals pq.

Ex.7: For a subset F of a group G, prove that

N(E) :={zr € G:zFE = Ex},
C(E)={rxeG:axy=yxforall y e E}.

are subgroups of G. If E is a subgroup of G, prove that N(E) is the largest subgroup of
G containing E as a subgroup and such that xE = Ex for all x € N(E).



Number Theory

1 The fundamental theorem of arithmetic

An integer p > 1is a prime number if its only positive divisors are 1 and p (by convention, p = 1
is not considered a prime number). The prime numbers form an infinite set. Indeed, if there
was finitely many prime numbers p; < ps < -+ < pg, then ¢ := p1ps - - - pr. +1 > pr, would not be
prime, hence it would be divisible by some prime number p;, but then p;|¢ —p1---p; - pr = 1,
which is absurd. In fact, the prime number theorem states that the number 7(n) of primes
less than or equal to n behaves like n/In(n) as n — oc.

The fundamental theorem of arithmetic states that every integer n > 1 can be written uniquely
(up to the order of factors) as product of primes.

2 Euclid algorithm and its consequences

Two integers n > 1 and m > 1 are called coprime (or relatively prime) if they share no common
prime factor. Stated differently, n and m are coprime if their greatest common divisor is 1.
The notions of greatest common divisor and least common multiple are self-explanatory. With
obvious notations, we have gcd(n,m) - lem(n,m) = n - m. The greatest common divisor of n
and m can be found via Euclid algorithm: with n > m, set ro = n, r1 = m, and produce r,
inductively for £ > 2 from the division of r,_5 by r,_1 as

Tk—2 = Qk—1Tk—1 T Tk, 0<ry <rmp_1.

Since the sequence of nonnegative numbers (7). is strictly decreasing, it eventually reaches
rg = 0, and ged(n, m) = rx_;1. This is the case because gcd is preserved at each iteration, i.e.,

(1) ged(ry—2,rp—1) = ged(rr—1,71), k>2,

hence ged(n,m) = ged(rg,r1) = ged(rg—o,7x—1) = rx—1 where the latter equality is due to
the fact that rx_o divides rx_1. The set of integer combinations is also preserved at each
iteration, i.e.,

(2) {pri + qre-1, (p,q) € Z} = {pre1 + qre, (p.q) € Z}, k>2,
so the equality between the first and last sets gives
{pn + qm, (p,q) € Z} = ged(n, m)Z.
This implies in particular Bézout lemma, i.e.,
ged(n,m) =1 <= dp,q € Z such that pn + qm = 1.

In turn, the latter is used to prove Euclid lemma (obvious with prime factor decompositions,
but needed in the uniqueness part of the fundamental theorem of arithmetic) which says that

if m divides nr and if m and n are coprime, then m divides r.

To see this, write nr = dm and pn + gm = 1, so that » = (pn + gm)r = pdm + gmr = (pd + qr)m.



3 Euler totient function

Define the Euler function ¢ on the positive integers by

¢(n) := card{k € [1 : n] such that k and n are coprime}.

Note that, if p is prime and if s > 1 is an integer, then ¢(p°®) = p* — p*~!

s—1

=p*(1 —1/p) (because
there are p°~! integers in [1 : p®] that are not coprime with p*, namely p, 2p, 3p, ..., p* " 'p = p°).
Note also that ¢ is multiplicative, meaning that ¢(nm) = ¢(n)¢(m) whenever n and m are
coprime (this is a consequence of the Chinese remainder theorem, see Modular Arithmetic).
Combining these two facts with the prime factor decomposition n = pj'p3? - - - p;* of a positive

integer gives the formula
1
d(n)=n H (1 - 7>.

; p
p prime, p|n
Multiplying out the right-hand side yields
n n
(3) ¢(n)=§du(d)=§du(d>,

where 1 is the Mobius function defined by p(1) = 1 and, for m > 1,
(m) = (=1)¢ if m = pips - - - pe is a product of ¢ distinct primes,
a ] 0 ifp?|m for some prime p.

This can be concisely written as ¢ = id x 1, where the Dirichlet convolution is the commutative
operation defined, for two functions a, b on positive integers, by

(axb)(n) =Y a(i)b()).

ij=n
This operation has an identity given by ¢(1) = 1 and e(m) = 0, m > 1, and is associative, since

[ax (bxo)l(n)= Y a(@)(bxe)(m)= Y ali) Y b(je(k) = Y ali)b(j)e(k),

im=n im=n Jjk=m ijk=n
[(axb)xcl(n)= Y (axb)(m)etk) = Y > a@b(i)ek) = Y ali)b(j)e(k).
km=n km=n1ij=m ijk=n

Let us also notice that, for an integer m > 1 decomposed in prime factors as m = pi'p3? - - - p’*,
¢
14 .
Su = X upem) =3 ()0 =01 e Y@=
dlm r1,...,re€{0,1} h=0 dlm
Since the sum takes the value 1 for m = 1, we have p*1 = e. Now, if a = b * p, then

ax1l=bxux1=0bxe=>b,and conversely,ifax1 =0,thenb*xpyu=ax*1%u=axe=a. Spelling
out the convolutions leads to Mobius inversion formula: for functions a, b on positive integers,
a(n) =Y b(d)p(n/d) foralln>1 < b(n)=> a(d) foralln> 1.

dln din
Taking a = ¢ and b = id in the latter and using (3) gives Euler formula, that is

> ¢(d) =n.

dln



4 Exercises

Ex.1: Verify the statements made in (1) and (2).

Ex.2:

Ex.3:

Ex.4:

Ex.5:

Prove that the distance between two consecutive prime numbers is unbounded.

Prove that the product of three consecutive integers is never a perfect power (i.e., not a
perfect square, not a perfect cube, etc.).

For an integer n > 1, prove that n* — 7n? + 1 cannot be a perfect square.

If n is an integer with prime factor decomposition n = plfl pgz . -p?", let f(n) := Zle kip;
and g(n) = limy, o0 f 0+ -+ 0 f(n). Evaluate g(100) and ¢(10'%). Find all odd integers
—_—

m times

n > 1 such that n/2 < g(n) < n.



Modular Arithmetic

1 Residue classes

Given an integer n > 2, we say that a € Z is congruent to b € Z modulo n if n divides a — b
— equivalently, if a = b + kn for some k € Z, or if a and b have the same remainder in the
division by n. In this case, we write a = b (mod n). Note that = is an equivalence relation
on Z (reflexive: a = a (mod n); symmetric: if a = b (mod n), then b = a (mod n); transitive: if
a="b (mod n) and b = ¢ (mod n), then a = ¢ (mod n)). Therefore, we can partition Z into the
equivalence classes, called residue classes,

[al, ={b€Z:b=a (mod n)} ={a+kn,k € Z}.

Each residue class has a unique representative in {0,1,...,n — 1} — the remainder of any
element of the class in the division by n — and is often identified to this representative.
Hence, the set Z,, of residue classes modulo n is identified to {0,1,...,n — 1}. Defining an

addition and a multiplication on Z,, by [a],, + [b], = [a + 0], and [a], - [b], = [a - b],, it can be
seen that (Z,, +) is a group. With Z} := {a € Z,, : 3b € Z,, : [a],, - [b], = [1]5,} denoting the set
of units (i.e., invertible elements) of Z,,, it can be seen that (Z}, -) is also a group.

2 Euler theorem

Note that (the representative) of a € Z is a unit of Z,, if and only if there exist b € Z and k € Z
such that ab + kn = 1. By Bézout lemma, this means that « € Z} if and only if « and n are
coprime. One consequence is that, if p is prime, then every nonzero element in Z, is invertible
— this makes Z, a field, where usual calculation rules apply, for instance ab = 0 (mod n)
implies a =0 (mod n) or b = 0 (mod n). Another consequence is that

card(Z,,) = card{a € [1 : n — 1] such that ¢ and n are coprime} = ¢(n),

where ¢ is Euler totient function. Thus, applying Lagrange theorem to the multiplicative
group Z;, yields Euler theorem, that is

a®™ =1 (mod n) whenever ged(a,n) = 1.
When n is a prime number p, this becomes Fermat little theorem, that is
@' =1 (modp)  whenever a is not a multiple of p.

Euler theorem provides a way to compute the powers modulo n of an integer a coprime with n,
m mod ¢(n) (

ie,ad"=a mod n).



3 Chinese remainder theorem

Given integers ni,no,...,n; > 2 that are pairwise coprime, the chinese remainder theorem
says that the system of congruence

x=ry (modnp),

ro  (mod ng),

8
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x =71, (mod nyg),

has a unique solution modulo N := nyns - - - nj. For the uniqueness, notice that, if x and 2’ are
two solutions, then nq|x — 2/, no|z — 2/, ..., ng|z — 2/, so ning - - - ng|x — 2’ (because ny, na, ..., ng
are coprime), i.e., z = 2/ (mod N). For the existence, set N; := N/n; and notice that N; and
n; are coprime. Thus, we can consider the inverse m; of N; in Z,,. It is now readily verified
that z := m1Niry + maoNore + - -+ + mp Niry is a solution of the system of congruence. Stated
differently, the theorem says that the map

T € Lnyngmy, — ( mod n1,x mod na,...,x mod ng) € Zp, X Zny X -+ Ln,
is bijective when n1,ns, ..., n, are pairwise coprime.
We can now justify that Euler totient function is multiplicative, i.e., that ¢(nm) = ¢(n)p(m)
when n and m are coprime. Indeed, for = € Z, the fundamental theorem of arithmetic reveals
[ged(z,nm) = 1] < [ged(x,n) =1, ged(x,m) = 1] & [ged(z mod n,n) =1, ged(x mod m, m) = 1],

sothat x € Z¥, — (z mod n,x mod m) € Z} xZ, is also a bijective map. The equality between
the cardinalities of Z},, and of Z} x Z}, gives the desired result.

4 Exercises

Ex.1: Verify that (Z,,+) and (Z,-) are groups.

Ex.2: We define a function f on positive integers by f(1) = 3 and f(n + 1) = 3f(n). What are
the last two digits of f(2012)?

Ex.3: For any integer n > 1, prove that n does not divides 2™ — 1.

Ex.4: What is the lowest degree monic polynomial which vanishes identically on the integers
(mod p) when p is prime? Same question (mod 100)?

Ex.5: How many perfect squares are there (mod 2")?



Linear Algebra

1 Range and null space

For A € M,,,x»(C), define its range
ran A := {Az,z € C"},
and its null space
ker A := {zx € C": Az = 0}.

These are linear subspaces of C™ and C", respectively. The rank and the nullity of A are
defined by
rk A := dim(ran A), nul A := dim(ker A).

They are deduced form one another by the rank-nullity theorem
rk A+ nul A =n.

Recall that A € M,,,«,(C) is injective if ker A = {0}, and surjective if ran A = C™. Note that
a square matrix A is injective (or surjective) iff it is both injective and surjective, i.e., iff it is
bijective. Bijective matrices are also called invertible matrices, because they are characterized

by the existence of a unique square matrix B (the inverse of A, denoted by A~!) such that
AB = BA=1.

2 Trace and determinant

The trace and determinants are functions taking square matrices and returning scalars. The
trace of A € M,,(C) is the sum of its diagonal elements, i.e.,

trd = Z Qi where A= [am]

=1

n
i,j=1"

Notice that the trace is linear (i.e., tr(AA + uB) = Atr(A) + utr(B)) and that
tr(AB) = tr(BA) whenever A € M,,»x,»,(C) and B € M, (C).

As for the determinant, it can be defined in several equivalent ways:

1. As a function of the columns of a marix, it is the only function f : C" x-.-xC" — C that is
linear with respect to each columns (f(..., Az + py,...) = Af(...,z,...)+uf(. ., y,.. ),
alternating (f(...,z,...,y,...) = —f(...,y,...,2,...)), and unit-normalized (f(I) = 1).
This can be used to derive the identity

det(AB) = det(A) det(B) for all A, B € M, (C).



2. det A = Z Sgn(U)al,a(l) ©Qpog(n)s
o€Sn

where S, is the set of n! permutations of [1 : n] and sgn(c) = (—1)%, s = number of
pairwise interchanges composing o (hence the computation rules for 2 x 2 and 3 x 3
determinants). This can be used to prove that

det AT =detA  forall A e M, (C).

3. Laplace expansion with respect to a row or a column, e.g. with respect to the ith row
n . .
det A = Z(—l)”]am’ det A; ;,
j=1

where A; ; is the submatrix of A obtained by deleting the ith row and the jth column. The
matrix B € M, (C) with entries b; ; := (—1)"*7 det A4; ; is called the comatrix of A — note
that BT is also called the adjoint of A (classical adjoint, not to be confused with hermitian
adjoint). Laplace expansion can be used to prove that ABT = (det A)I. In turn, it is
deduced that A € M,,(C) is invertible iff det A # 0, in which case A~! = (1/det(A))B'.

3 Eigenvalues and eigenvectors
Given a square matrix A € M,,(C), if there exist A € C and z € C", = # 0, such that
Ax = Az,

then ) is called an eigenvalue of A and z is called an eigenvector corresponding to the eigen-
value ). The set of all eigenvectors corresponding to an eigenvalue )\ is called the eigenspace
corresponding to the eigenvalue A\ — it is indeed a linear space. Note that ) is an eigenvalue
of Aiff det(A — \I) =0, i.e., iff X is a zero of the characteristic polynomial of A defined by

pa(x) = det(A — zI).
Observe that p,4 is a polynomial of the form
palz) = (=1)"2" + (=1)" " Htr(A) 2" L 4 - - + det(A).

Since this polynomial can also be written in factorized form as (A\; — z)--- (A, — x), where
{A1,...,A\n} is the set of eigenvalues of A (complex and possibly repeated), we have

tr(A) = A4+ A, det(A) = A A

The existence of n linearly independent eigenvectors vy, ...,v, € C" corresponding to eigen-
values Ai,...,\, of A € M,, (which occurs in particular if A has n distinct eigenvalues) is



equivalent to the existence of a invertible matrix V' € M,, and of a diagonal matrix D € M,
such that
A=VvDVL

The columns of V are the v}s and the diagonal entries of D are the \;’s. In this case, we say
that the matrix A is diagonalizable. More generally, two matrices A and B are called similar
if there exists an invertible matrix V such that A = VBV ~!. Note that two similar matrices
have the same characteristic polynomial, hence the same eigenvalues (counting multiplici-
ties), and in particular the same trace and determinant.

4 Exercises

Ex.1: We recall that rk A* = rk A, where A* € M, x,»(C) denotes the conjugate transpose
of a matrix A € M,,x,». In general, is it true that nul A* = nul A? Establish that
ker A = ker A*A, deduce that nul A = nul A*A and that rk A = rk A*A = rk A* = rk AA*,
and finally conclude that ran A = ran AA*.

Ex.2: Calculate tr(A*A) and observe that A = 0 iff tr(A*A) =0

Ex.3: For A, B € M, (C), prove that AB = I implies BA = I. Is this true if A and B are not
square?

Ex.4: Determine the eigenvalues and eigenvectors of the matrix

t 1 t

A= ,
t .
t t 1

and diagonalize it.

Ex.5: For A € M,,(Z), suppose that there exists a prime number p dividing Z;’:l a; ; for all
i € [1:n]. Prove that p divides det(A).

Ex.6: Determine if the following statement is true or false: there exists A € M, (R) such that
A? + 2A + 51 = 0 if and only if n is even.
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