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Abstract

Dimensions of spaces of multivariate splines remain unknown in general. A computa-
tional method to obtain explicit formulas for the dimension of spline spaces on simplicial
partitions is described. The method is based on Hilbert series and Hilbert polynomials. It
is applied to conjecture the dimension formulas for splines on the Alfeld split of a simplex
and on several other partitions.
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1 Introduction

Let A, denote a simplicial partition of a polyhedral domain 2 C R", so that if any two sim-
plices in A, intersect, then their intersection is a facet of A,,. The space of C" splines of
degree < d in n variables on A, is

Si(Ay) == {s€C"(Q): s|r € Pay for each simplex T € A, },

where P, is the space of polynomials of degree < d in n variables. We are interested in the
dimension of the space S(A,). For fixed d and r, determining a closed formula for arbitrary
partitions is still a major open problem, even in the bivariate case, see [9]. In this case, it is
known [9, p. 240] that if A, is a shellable (regular with no holes) triangulation, then
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where E; is the number of interior edges, V; is the number of interior vertices, V; is the set of
interior vertices of Ay, and

d—r

Oy 1= Z max{r +j+1— jm,,0}, m, :=number of different edge slopes meeting at v.

j=1
The right-hand side of (1) is the correct expression for the dimension if d > 3r+1, see [9, p.247
and p.273]. Not much is known for d < 3r, and it is somewhat staggering that the dimensions
of S1(Az) and of S}(A2) remain uncertain in general. Let us point out that the right-hand
side of inequality (1) can be rewritten as a linear combination of binomial coefficients — a form
that is favored in this paper:

d+1-— r)

dim 85(Ag) > (d ; 2) + (Er — 3V1)< 5

+Vz<d+;_“>+vf<d+;_y>+(svf - va>(ﬂ+21_r>,

vEVY

where

. r+1 . r+1
u.-r—i—{ 5 J, 1/.-7”—#[ 5 -‘
In the case of a cell C, — a triangulation with one interior vertex v — it is known that the lower
bound is the correct dimension, namely

Gim SH(Cy) = (d-;2>+(EI_3)<d+;—r>+<d+;—u)+(d+;—u>+(3_m)(u+;—r>,

where m < E; is the number of different slopes of the E; interior edges meeting at v. In
fact, the formula for the cell is the basis of the argument used to derive (1). This example
demonstrates that the dimension depends not only on the combinatorics of A, — number of
vertices, edges, and other faces — but also on its exact geometry. The point of view adopted
in this paper consists in fixing the partition and looking for dimension formulas valid for
all d, r, and possibly n. The main experimental result, namely Conjecture 1, concerns the
spline spaces on the Alfeld split of a single simplex. This split is a generalization of the
Clough—Tocher split of a triangle to higher spacial dimensions. The Clough—Tocher split of
a triangle has one interior vertex, three interior edges, and three subtriangles. The split
of a tetrahedron with one interior vertex, four interior edges, six interior faces, and four
subtetrahedra was introduced in [2]. We shall refer to the split of a simplex in R™ with (";CH)
interior k-dimensional faces, 0 < k < n, as the Alfeld split A4,,. The following is our conjecture
on the dimension.

Conjecture 1. The dimension of the space S);(A,,) of splines of degree < d in n variables over
the Alfeld split A, of a simplex is given by

1
n<d+n E (n+1)>7 if  is odd,
dim S5(A,) = (ﬁ") +
<d+n—1;2(n+1)>+m+<d_2(n"+1)>, if r is even.



This formula was obtained using the computational method that we introduce in Section 2.
In Section 3, we describe the steps leading to Conjecture 1, and report without details other
formulas obtained via this method for several tetrahedral partitions. In Section 4, we discuss
the potential of the method.

2 The computational method

In this section, we show how to derive an explicit formula for the dimension of §);(A,), in the
form of a linear combination of binomial coefficients, using computed values of this dimension
for a finite number of parameters  and d. We first show why the sequence {dim S);(A,)}q>0
depends only on a finite number of its values.

Let us for now fix the number n of variables, the simplicial partition A,,, and the smoothness
parameter r. It is well-known that the dimension of S);(A,,) agrees with a polynomial of degree
n in variable d when d is sufficiently large. This polynomial is called the Hilbert polynomial,
and it is denoted by H := Hpa,, , throughout this paper. We denote by d* := d} , the smallest
integer such that

dimSj(A,) = H(d) forall d > d*.

The sequence {dim S (A,)}4>0 is determined by its first d* + n + 1 values. Indeed, the terms
{dim S} (Ay), d* <d < d*+n}

define {dim S);(A,)}4>¢+ by interpolation of the Hilbert polynomial, while the values
{dimSj(Ay), 0 <d <d*—1}

complete the first d* terms of the sequence. The estimation of d* remains a key question. Our
method incorporates the widely accepted assumption that

(2) N2+ 1

This is suggested by the technique of partitioning the minimal determining set into non-
overlapping subsets associated with each face, see [4]. Moreover, for the subspace of S} (A,,)
imposing additional (or super) smoothness 72" ~7~! across every j-dimensional face of A, it
was shown in [5] that the dimension is indeed a polynomial in d for d > 2" 4+ 1. The bound
(2) is likely to be an overestimation, though. The examples of Section 3 and the improved
bound d}, . < 3r+ 2 obtained in [8] for shellable triangulations supports this belief. Reducing
the bound would reduce the number of dimension values to be computed. Since splines with
degrees not exceeding smoothness are simply polynomials, we have

d+n

dim S5(A,) = < :

> for d <r.



Thus, assuming (2), only the r(2" — 1) + n + 1 values {dim S}j(A,), r+1 < d < 72" +n + 1}
are left to be computed. An additional saving can be made by using the values for smaller
degrees, since we have

dim S5(Ay) = dim Py, = <d * ”ﬂ — {dimS,@(An) = dim Py, = (’“ + ”) for k < d].
n n

Assuming that computing dim S);(A,,) is possible for any d > 0, the above described method
gives us access to the whole sequence {dim S);(A,)}4>0. To obtain an explicit formula, we rely
on the concept of Hilbert series, i.e., the generating function of the sequence {dim S};(A,)}4>0.
According to [6, Theorem 2.8], it satisfies

P(z)

d>0

for some polynomial P := P, , with integer coefficients. Denoting these coefficients by a;, =
ai,A,.r» and denoting the degree of P by k* = Zmr, that is,

k*

P(z) = Z a2, ap # 0,

k=0

two further particulars are established in [6, Theorem 4.5]:

k* k*
(4) P)=>ar=N, P1)=) ka=(r+1)F™,
k=0 k=0

where N and F'™ represent the number of simplices and interior facets of A, respectively.
In the particular case when A, is a single simplex, the space S}(A,) is just the space P, of
polynomials of degree d in n variables. Then it can be seen that P = 1 from the identity

d+n\ 4 1
® ;( i
This identity is clear for n = 0 and is inductively obtained by successive differentiations
with respect to z for n > 1. While the derivation of the polynomial P from the dimensions
dim S (A,) was straightforward, identity (5) conversely provides an explicit formula for the
dimensions dim §);(A,,) in terms of the coefficients of P. Indeed, the formula

k/.*
. or _ d+n—k
(6) dim S5(A,) = Zak( ; )
k=0
was isolated in [6] and it also follows from
k* k; k* k* .
S im0 = Y = > (U)ot 2 S (1R
d>0 k=0 (1-2) k=0 d>0 " d>0 k=0 "
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by identifying the coefficients in front of each z¢. Taking into account that
(d—k+n)d—k+n—-1)---(d—k+1)

!
<d+n—k>: g (d=ktn)d— kA1) (d— k1)

n

. ifd>k,

' . ifk-n<d<k-1,
n:

0 , ifd<k-—-n-1,
we observe that, for d > k* — n, the dimension of S);(A,,) agrees with the Hilbert polynomial

Zak(d_k+n)(d_k+n_1)"'(d_k+1)

H(d):= py

k=0

Moreover, for d = k* — n — 1, we have

(=D(=2)---(=n)

n!

HE*—n—-1)—dimSp._,,_;(Ay) = aj= ( - 0) = (=1)"ag # 0.

The definition of d* therefore yields d* = k* — n, and consequently, we see that
k* =d* +n.

This was intuitively anticipated because the determination of the sequence {dim S}(A,)}a>0
requires d* + n + 1 pieces of information while the equivalent determination of the polynomial
P requires the k* + 1 pieces of information corresponding to its coefficients. Now we describe
a practical way to determine these coefficients from the computed values {dim S} (A,,) g*;g”. It
is simply based on the observation that

1 d*P(2) 1 d* ((1

=0k == g —zYHJE:dhn&ﬂAnyﬂ)bzo

d>0

() 1m0 )

d>0

ar

k - (n+1)! o
<>(_Ukan+1k+fﬂﬂmmSAA“

- k—e (LY o
@ =30 (3 7)) dmsian
In particular, the value dimSj(A,) = 1 yields agp = 1, then the value of dim S{(A,,) yields
a1, the values of dim S7(A,) and of dim S5(A,,) yield a2 and so on. This shows that the com-
putation of the coefficients a; can be performed sequentially, along with the computation of
the dimensions dim S} (A,,). As long as dim S} (A,,) equals (’“”), identity (5) ensures that the

n
coefficients a; agree with the coefficients of the constant polynomial P = 1:

ap=1, a1 =0, a2=0, ---, aq, =0,

*
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where d,. denotes the largest integer such that dim S} (A,) = (

dy+n

). As a matter of fact,

applying (7) to a partition consisting of a single simplex, we obtain

(| g B

We may therefore also express the coefficient a;, as

k

8) ap =y (1)

=0

"), k=1

where 0;(A,,) is the codimension of the polynomial space P, in the spline space S;(A,), i.e.,

5 (An) 1= dim S}(A,) — (E ! ”)

n

which is less costly to compute than the dimension of S;(A,). We finally note that at most
min{n + 2,k — d,} nonzero terms enter the sum in (8), since the summand is nonzero only

when?/>k—-n—1and ¢ >d, + 1.

The computational method described above exploits the specific form of the Hilbert series. As
a conclusion to this section, we make the side observation that (3) can be derived by simple
means. It suffices to set vy = dim S};(A,,) in the following lemma.

Lemma 1. Let {uq}q>0 be a sequence for which there is a polynomial () of degree m such that
ug = Q(d) whenever d > d for some d. Then there exists a polynomial R such that

EE

d>0

Proof. We write the polynomial @ as Q(d

of the sequence {u4}q>0, we have

Zudzd:ZQ(d)zd+Z(ud—Q d

d>0 d>0 d>0
d
—Z% 1_zk+1+ZUd—
d=0

The latter indeed takes the form R(z)/(1 —

k

"L (d+k
qu( + ) Then, for the generating function

m d
Zd:Z%Z <d+k> zd+z ug —Q
k=0  d>0 d=0

z)"*1 for some polynomial R. O



The previous lemma also enables to reprove (4). Indeed, we notice that the lower and upper
bounds derived in [3] yield

amsj(an) =N (1) e nE (T o),

Therefore, for d large enough, the quantity

) ug = dim 85(A) —N<d+”> +(r 4+ 1)F™ (‘”"‘ 1)

n n—1

reduces to a polynomial of degree < n — 2. The claim implies that, for some polynomial R,

P, »(2) N (r+1) Flnt B R(z)
(1— 2t~ (1= )+l (1-2) ;udz — )1

Rearranging the latter, we obtain
P, (2) =N —(r+1)(1 —2)F™ + (1 — 2)®R(2),

which in turn shows that Pa, (1) = N and Py (1) = (r + 1)F™".

3 Application of the method to specific partitions

In this section, we demonstrate the usefulness of our computational method on several specific
partitions. We recall that our method relies on the computation of dim S} (A,,) for fixed d, r,
and A,,. This step was performed using the interactive applet [1] for n = 3, and other codes in
Java and Fortran for n > 3, all written by Peter Alfeld.

Alfeld split of a simplex. We recall that the split of a simplex A,, in R” with (") interior
k-dimensional faces, 0 < k < n, is the Alfeld split of A,,. For n = 2, Theorem 9.3 in [9] yields

e d+2 d+1— d+1-v r+1 r+1
dlde(AQ):( 5 >+< 5 M)—l—( 5 >, u:zr—i—{ 5 J, V::r—i—[ 5 -‘

Forn=3andr =0,1,2, 3, we were able to compute enough values of the dimensions to derive

the sequence a") := (a(() ), a{”,al,...) of coefficients of the polynomial Py, , with certainty.
We obtained

a® =(1,1,1,1,0,...)

a) = (1,0,0,0,3,0,0,0,0,0,0,0,0,...)

a® =(1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,...)

a® = (1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...).



For r > 4, the dimensions we could compute yielded the start of the sequence a(™ with cer-
tainty, but we cannot be totally sure that all nonzero coefficients have been found. We obtained

a® =(1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,....)
a® =(1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0, . ...)
a® —(1 0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0, . ..)
= (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0, . ...)
=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,...).

Inspection of the sequences alV), .., a(® strongly suggests the pattern of nonzero coefficients
a@% agigw = aélgr =1 forr even, a(ﬁ% =3 forr odd.

For n = 4,5,6, we were also able to compute some values of the dimensions for the space of
C"-splines of degree < d over the Alfeld split A,,. These investigations lead us to the following
conjecture:

il
n(d+n nQ(n+1)>’ if 7 is odd,
(10) dim S}(A,)= (d;”)+
<d+n1( +1)>+,,,+<d2(”+1)>, if r is even.
n n

Let us note that for even values of r the formula can be expressed differently since
i d+n—5n+1)—j\ _ (d+n—-5n+1)\ [(d—35n+1)
et n N n+1 n+1 '

The result can be equivalently formulated via the polynomial Py, , of (3) as

14+nzT 0 odd,

PAnyr(Z):

(n+1)+j5

T
1+ 22 , T even.

=

1

J

We report below further conjectures produced from our method. Descriptions and illustrations
of the corresponding tetrahedral partitions are available in Alfeld’s applet menu, see [1].

Type-I split of a cube (B;). This partition of a cube consists of six tetrahedra, all sharing
one main diagonal of the cube. This diagonal is the only interior edge of the partition. There
are no interior split points. Type-I split has 6 interior triangular faces, and 18 boundary edges



comprised of 12 edges of the cube and six diagonals of its faces. Based on computations for

r < 8, we conjecture that
_ 3r+3
2<d+3 2 ) r odd,

3

dimSQ(Bﬂ:(d;B) +3<d+3—3(r+1)> N

<d+3—37’2+2> <d+3—37"2+4
_|_

3 3 ), r even.

Worsey-Farin split of a tetrahedron (W F). This partition is a refinement of the Alfeld
split A3 of a tetrahedron obtained by applying the Clough—Tocher split A5 to each face of the
tetrahedron. The Worsey—Farin split consists of 12 subtetrahedra meeting at one interior

point. This partition has 18 interior triangular faces and 8 interior edges. Based on computa-
tions for » < 8, we conjecture that
3r43
g d+3— 3k
2

d _ 3r+2 d _ 3r+4
4< +33 5 >+4( +33 5 )

dim 8} (W F)= (d "?f 3> +

3<d—|—3—3(2r+2)>’ - odd,

+

<d+3—3(2r+1)>+<d+3—3(2r+2)>+<d+3—3(2r+3)

> , T even.

Generic octahedron (OCT). This partition of an octahedron consists of eight tetrahedra
meeting at one interior split point. This split point cannot be collinear with any two vertices
of the octahedron. There are 12 interior triangular faces and 6 interior edges in this partition.
Based on computations for r < 8, we conjecture that

dim 87(0CT)= <d ; 3>

(r+1)<d+3—3(27“+1)> +7(d—|—3—3(2r+2)> _(T+1)(d+3—3(2r+3))7r:2m0d37

_.|_

(r+3)<d+33(2r+1)> +3<d+33(27“+2)> _(T_1)<d+33(2r+3)>7 otherwise.

Generic 8-cell (Cg). The easiest way to visualize this partition is to start with a refinement
of the Alfeld split A of a tetrahedron obtained by applying the Clough—Tocher split A, to

9



two faces of the tetrahedron. Let us denote the new split points on the face © and v. This
partition consists of 8 subtetrahedra meeting at one interior point. Note that the vertices u
and v can be moved to the exterior of the original tetrahedron without changing the topology
of the partition. This process results in a partition that has the same number of interior and
boundary faces, edges, and vertices as the octahedral partition described above. However,
connectivities of the faces are different. For example, each interior edge of the octahedral
split is shared by exactly four tetrahedra. In the 8-cell, two interior edges are shared by
five tetrahedra, another two are shared by four tetrahedra, and the remaining two edges are
shared by three tetrahedra. Based on computations for » < 8, we conjecture that, for » > 2,

dim §7)(Cs)= (d . 3)

2r(d+3—3(2r+1)) _(2r_9)<d+3—3(27“+2)> _2<d—|—3—3(2r+3)>’ - odd,

(2r+1><d+3—3(2r+1)> —(27’—7)<d+3_(2T+2)) B <d+3—(2r+3)), - ever.

+

3 3

We note that the cases » = 0 and » = 1 do not follow the general pattern.

4 Discussion

Towards theoretical improvements. The main shortcomings of our method are its high
complexity and limited reliability.

Complexity. At present, we need to compute an exponential in n number of values of spline
dimensions. As n increases, the cost of computing each dimension goes up. This quickly
becomes prohibitive. One way to resolve this issue is to lower the bound on d*. Ideally, it
would be a drop from 2" + 1 down to a quantity that is linear in n. Such estimate on the
lower bound on d* is supported by several observations. If n = 2, for shellable triangulations,
we have d* < 3r + 2. When n = 3, reasonably low values of d* can be inferred for the examples
of Section 3. We also observed linear behavior in n of d* for the Alfled splits. One can also
envision that further theoretical information will help to reduce the number of computations.
For instance, if a specific partition is known to yield nonnegative coefficients a;, then we can
stop computing dim S%(A,,) as soon as the conditions Y¢_ ay = F,, and S¢_, kay = (r+1)F™,
are satisfied.

Reliability. Even if all necessary values of dim S)j(A,,) are available for a fixed r, the formula
we deduce is only valid for this fixed r. At present, the formula we infer for all values of r relies
on a plausible guess. Some theoretical information on the type of dependence of dim S);(A,,) on
r would be decisive in this respect. The results of Section 3 suggest dependence on the parity

10



of r, sometimes dependence on divisibility of » by 3, and occasionally the predicted dependence
is not valid for smaller values of r.

Towards computational improvements. To compute the dimension of S)(A,), Alfeld’s
codes translate the set of smoothness conditions into a linear system for the Bernstein—Bézier
coefficients, then the matrix of the system is reduced by Gaussian elimination, and its rank
is determined. It may be possible to find faster alternatives. The discussion in [7] hints at a
practical method using Grobner bases. Additionally, when computing dim S);(A,,), it should be
possible to use the knowledge of the dimensions of the spaces with lower degree and smooth-
ness, since the values {dim S);(A,), 0 < d < d* + n} are determined sequentially. Finally, to
deduce the coefficients a, it may be sensible to compute only the quantities §),(A,) appear-
ing in (8), or some suitable linear combinations of {dim S}(A,), 0 < d < d* + n}. This latter
approach could take advantage of the fact that the sequence {a;} appears to have only few
nonzero terms.

A optimistic final perspective. Should the theoretical and computational improvements
materialize, a stand-alone program for the explicit determination of the dimensions ought
to be implemented. With modern (or future) computational power, the dimension formulas
could be obtained for a wide variety of partitions. It is not unrealistic that some expressions
for the coefficients a;, could then be inferred in terms of the smoothness r, the combinatorial
parameters, and other topological parameters — especially in the generic case where the
geometry does not play a role.

Acknowledgements. We thank Peter Alfeld for the essential computational tools he created
and for the enlightening thoughts he shared with us.
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