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Abstract

A recent result establishing, under restricted isometry conditions, the success of sparse
recovery via Orthogonal Matching Pursuit using a number of iterations proportional to
the sparsity level is extended to Weak Orthogonal Matching Pursuits. The new result also
applies to a Pure Orthogonal Matching Pursuit, where the index appended to the support
at each iteration is chosen to maximize the subsequent decrease of the squared-norm of
the residual vector.

1 Introduction and Main Results

This note considers the basic Compressive Sensing problem, which aims at reconstructing
s-sparse vectors x ∈ CN (i.e., vectors with at most s nonzero entries) from the knowledge of
measurement vectors y = Ax ∈ Cm with m � N . By now, it is well established — see [1, 2]
and references therein — that this task can be carried out efficiently using the realization
of a random matrix as a measurement matrix A ∈ Cm×N and by using `1-minimization as a
reconstruction map ∆ : Cm → CN . There exist alternatives to the `1-minimization, though,
including as a precursor the Orthogonal Matching Pursuit introduced by Mallat and Zhang
in [7] in the context of sparse approximation. The basic idea of the algorithm is to construct a
target support by adding one index at a time, and to find the vector with this target support
that best fits the measurement. It had become usual, when trying to reconstruct s-sparse
vectors, to analyze the convergence of this algorithm after s iterations, since the sth iterate is
itself an s-sparse vector. For instance, the exact reconstruction of all s-sparse vectors x ∈ CN

from y = Ax ∈ Cm via s iterations of Orthogonal Matching Pursuit can be established under
a condition on the coherence of the matrix A, or even on its cumulative coherence, see [10]
for details. Lately, there has also been some work [3, 5, 6, 8] establishing sparse recovery
under some (stronger than desired) conditions on the restricted isometry constants of the
measurement matrix. We recall briefly that the sth restricted isometry constant δs of A is
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defined as the smallest constant δ ≥ 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

However, it was observed by Rauhut [9] and later by Mo and Shen [8] that s iterations of
Orthogonal Matching Pursuit are not enough to guarantee s-sparse recovery under (more
natural) restricted isometry conditions. Nonetheless, it was recently proved by Zhang [11]
that 30s iterations are enough to guarantee s-sparse recovery provided δ31s < 1/3. Zhang’s
result also covers the important case of vectors x ∈ CN which are not exactly sparse and
which are measured with some error via y = Ax + e ∈ Cm — in fact, it covers the case of
measurement maps A : CN → Cm that are not necessarily linear, too. This note imitates the
original arguments of Zhang and extends the results to a wider class of algorithms. Namely,
we consider algorithms of the following type:

Generic Orthogonal Matching Pursuit

Input: measurement matrix A, measurement vector y, index set S0.
Initialization: x0 = argmin

{
‖y −Az‖2, supp(z) ⊆ S0

}
.

Iteration: repeat the following steps until a stopping criterion is met at n = n̄

Sn+1 = Sn ∪ {jn+1},(GOMP1)

xn+1 = argmin
{
‖y −Az‖2, supp(z) ⊆ Sn+1

}
.(GOMP2)

Output: n̄-sparse vector x? = xn̄.

The recipe for choosing the index jn+1 distinguishes between different algorithms, which are
customarily initiated with S0 = ∅ and x0 = 0. The classical Orthogonal Matching Pursuit
algorithm corresponds to a choice where

(1) |(A∗(y −Axn))jn+1 | = max
1≤j≤N

|(A∗(y −Axn))j |.

The Weak Orthogonal Matching Pursuit algorithm with parameter 0 < ρ ≤ 1 corresponds to
a choice where

(2) |(A∗(y −Axn))jn+1 | ≥ ρ max
1≤j≤N

|(A∗(y −Axn))j |.

We also single out a choice of jn+1 6∈ Sn where

(3)
|(A∗(y −Axn))jn+1 |

dist(ajn+1 , span{ai, i ∈ Sn})
= max

j 6∈Sn

|(A∗(y −Axn))j |
dist(aj , span{ai, i ∈ Sn})

,

where a1 . . . ,aN ∈ Cm denote the columns of A. We call this (rather unpractical) algorithm
Pure Orthogonal Matching Pursuit, because it abides by a pure greedy strategy of reducing as
much as possible the squared `2-norm of the residual at each iteration. Indeed, the following
observation can be made when a1, . . . ,aN all have norm one.
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Theorem 1. For any Generic Orthogonal Matching Pursuit algorithm applied with a matrix
A ∈ Cm×N whose columns a1, . . . ,aN are `2-normalized, the squared `2-norm of the residual
decreases at each iteration according to

‖y −Axn+1‖22 = ‖y −Axn‖22 −∆n,

where the quantity ∆n satisfies

∆n = ‖A(xn+1 − xn)‖22 = xn+1
jn+1(A∗(y −Axn))jn+1 =

|(A∗(y −Axn))jn+1 |2

dist(ajn+1 , span{ai, i ∈ Sn})2

≥ |(A∗(y −Axn))jn+1 |2.

This result reveals that the quantity ∆n is computable at iteration n. This fact is apparent
from its third expression but it is hidden in its first two expressions. Maximizing ∆n leads to
the Pure Orthogonal Matching Pursuit, as hinted above. We informally remark at this point
that ∆n almost equals its lower bound when A has small restricted isometry constants, i.e.,
when its columns are almost orthonormal. Hence, under the restricted isometry property, the
Pure Orthogonal Matching Pursuit algorithm almost coincides with the classical Orthogonal
Matching Pursuit algorithm. This is made precise below.

Theorem 2. Given an integer n̄ ≥ 1 for which δn̄ < (
√

5−1)/2, the Pure Orthogonal Matching
Pursuit algorithm iterated at most n̄ times is a Weak Orthogonal Matching Pursuit algorithm
with parameter ρ :=

√
1− δ2

n̄/(1− δn̄).

The proofs of Theorems 1 and 2 are postponed until Section 3. We now state the main result
of this note, which reduces to Zhang’s result for the classical Orthogonal Matching Pursuit
algorithm when ρ = 1 (with slightly improved constants). Below, the notation xS stands for
the vector equal to x on the complementary set S of S and to zero on the set S, and the notation
σs(x)1 stands for the `1-error of best s-term approximation to x.

Theorem 3. Let A ∈ Cm×N be a matrix with `2-normalized columns. For all x ∈ CN and all
e ∈ Cm, let (xn) be the sequence produced from y = Ax+e and S0 = ∅ by the Weak Orthogonal
Matching Pursuit algorithm with parameter 0 < ρ ≤ 1. If δ(1+3r)s ≤ 1/6, r := d3/ρ2e, then
there is a constant C > 0 depending only on δ(1+3r)s and on ρ such that, for any S ⊆ {1, . . . , N}
with card(S) = s,

(4) ‖y −Ax2rs‖2 ≤ C‖AxS + e‖2.

Furthermore, if δ(2+6r)s ≤ 1/6, then, for all 1 ≤ p ≤ 2,

(5) ‖x− x4rs‖p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2‖e‖2

for some constants C,D > 0 depending only on δ(2+6r)s and on ρ.
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2 Sparse Recovery via Weak Orthogonal Matching Pursuits

This section is dedicated to the proof of Theorem 3. We stress once again the similitude of the
arguments presented here with the ones given by Zhang in [11]. Throughout this section and
the next one, we will make use of the simple observation that

(6) (A∗(y −Axk))Sk = 0 for all k ≥ 1.

Indeed, with n := k − 1 ≥ 0, the definition of xn+1 via (GOMP2) implies that the residual
y − Axn+1 is orthogonal to the space {Az, supp(z) ⊆ Sn+1}. This means that, for all z ∈ CN

supported on Sn+1, we have 0 = 〈y−Axn+1, Az〉 = 〈A∗(y−Axn+1), z〉, hence the claim. It will
also be convenient to isolate the following statement from the flow of the argument.

Lemma 4. Let A ∈ Cm×N be a matrix with `2-normalized columns. For x ∈ CN and e ∈ Cm,
let (xn) be the sequence produced from y = Ax+ e by the Weak Orthogonal Matching Pursuit
algorithm with parameter 0 < ρ ≤ 1. For any n ≥ 0, any index set U not included in Sn, and
any vector u ∈ CN supported on U ,

‖y −Axn+1‖22 ≤ ‖y −Axn‖22 − ρ2 ‖A(u− xn)‖22
‖uSn‖21

max{0, ‖y −Axn‖22 − ‖y −Au‖22}

≤ ‖y −Axn‖22 −
ρ2(1− δ)

card(U \ Sn)
max{0, ‖y −Axn‖22 − ‖y −Au‖22},(7)

where δ := δcard(U∪Sn).

Proof. The second inequality follows from the first one by noticing that

‖A(u− xn)‖22 ≥ (1− δ)‖u− xn‖22 ≥ (1− δ)‖(u− xn)Sn‖22,
‖uSn‖21 ≤ card(U \ Sn)‖uSn‖22 = card(U \ Sn)‖(u− xn)Sn‖22.

Now, according to Theorem 1, it is enough to prove that

(8) |(A∗(y −Axn))jn+1 |2 ≥ ρ2 ‖A(u− xn)‖22
‖uSn‖21

{‖y −Axn‖22 − ‖y −Au‖22}

when ‖y −Axn‖22 ≥ ‖y −Au‖22. Making use of (6), we observe on the one hand that

<〈A(u− xn),y −Axn〉 = <〈u− xn, A∗(y −Axn)〉 = <〈(u− xn)Sn , (A
∗(y −Axn))Sn〉

≤ ‖(u− xn)Sn‖1‖(A∗(y −Axn))Sn‖∞ ≤ ‖uSn‖1|(A∗(y −Axn))jn+1 |/ρ.(9)

We observe on the other hand that

2<〈A(u− xn),y −Axn〉 = ‖A(u− xn)‖22 + ‖y −Axn‖22 − ‖A(u− xn)− (y −Axn)‖22
= ‖A(u− xn)‖22 +

{
‖y −Axn‖22 − ‖y −Au‖22

}
≥ 2‖A(u− xn)‖2

√
‖y −Axn‖22 − ‖y −Au‖22.(10)
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Combining the squared versions of (9) and (10), we arrive at

‖A(u− xn)‖22
{
‖y −Axn‖22 − ‖y −Au‖22

}
≤ ‖uSn‖21|(A∗(y −Axn))jn+1 |2/ρ2.

Rearranging the terms leads to the desired inequality (8).

Theorem 3 would actually holds for any sequence obeying the conclusion of Lemma 4, by
virtue of the following proposition.

Proposition 5. Let A ∈ Cm×N be a matrix with `2-normalized columns. For an s-sparse
vector x ∈ CN and for e ∈ Cm, let y = Ax + e and let (xn) be a sequence satisfying (7). If
δ(1+3d3/ρ2e)s ≤ 1/6, then

‖y −Axn̄‖2 ≤ C‖e‖2, n̄ := 2d3/ρ2e card(S \ S0),

where C > 0 is a constant depending only on δ(1+3d3/ρ2e)s and on ρ.

Proof. The proof proceeds by induction on card(S \ S0), where S := supp(x). If it is zero, i.e., if
S ⊆ S0, then the definition of x0 implies

‖y −Ax0‖2 ≤ ‖y −Ax‖2 = ‖e‖2,

and the result holds with C = 1. Let us now assume that the result holds up to an integer
s′−1, s′ ≥ 1, and let us show that it holds when card(S \S0) = s′. We consider subsets of S \S0

defined by

U0 = ∅ and U ` = {indices of 2`−1 largest entries of x
S0 in modulus} for ` ≥ 1,

to which we associate the vectors

x̃` := x
S0∪U` , ` ≥ 0.

Note that the last U `, namely U dlog2(s′)e+1, is taken to be the whole set S \S0 (it may have less
than 2`−1 elements), in which case 0 = ‖x̃`‖22 ≤ ‖x̃`−1‖22/µ for a constant µ to be chosen later.
We may then consider the smallest integer 1 ≤ L ≤ dlog2(s′)e+ 1 such that

‖x̃L−1‖22 ≥ µ‖x̃L‖22.

Its definition implies the (possibly empty) list of inequalities

‖x̃0‖22 < µ‖x̃1‖22, . . . , ‖x̃L−2‖22 < µ‖x̃L−1‖22.

For each ` ∈ [L], we apply inequality (7) to the vector u = x − x̃` supported on S0 ∪ U ` while
noticing that (S0 ∪U `)∪Sn ⊆ S ∪Sn and (S0 ∪U `) \Sn ⊆ (S0 ∪U `) \S0 = U `, and we subtract
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‖y −Au‖22 = ‖Ax̃` + e‖22 from both sides to obtain

max{0,‖y −Axn+1‖22 − ‖Ax̃` + e‖22}

≤
(

1− ρ2(1− δs+n)

card(U `)

)
max{0, ‖y −Axn‖22 − ‖Ax̃` + e‖22}

≤ exp

(
− ρ2(1− δs+n)

card(U `)

)
max{0, ‖y −Axn‖22 − ‖Ax̃` + e‖22}.

For any K ≥ 0 and any n, k ≥ 0 satisfying n+ k ≤ K, we derive by immediate induction that

max{0,‖y −Axn+k‖22 − ‖Ax̃` + e‖22}

≤ exp

(
− kρ2(1− δs+K)

card(U `)

)
max{0, ‖y −Axn‖22 − ‖Ax̃` + e‖22}.

By separating cases in the rightmost maximum, we easily deduce that

‖y −Axn+k‖22 ≤ exp

(
− kρ2(1− δs+K)

card(U `)

)
‖y −Axn‖22 + ‖Ax̃` + e‖22.

For some integer κ to be chosen later, applying this successively with

k1 := κ card(U1), . . . , kL := κ card(UL), and K := k1 + · · ·+ kL,

yields, with ν := exp(κρ2(1− δs+K)),

‖y −Axk1‖22 ≤ 1

ν
‖y −Ax0‖22 + ‖Ax̃1 + e‖22,

‖y −Axk1+k2‖22 ≤ 1

ν
‖y −Axk1‖22 + ‖Ax̃2 + e‖22,

...

‖y −Axk1+···+kL−1+kL‖22 ≤ 1

ν
‖y −Axk1+···+kL−1‖22 + ‖Ax̃L + e‖22.

Dividing the first row by νL−1, the second row by νL−2, and so on, then summing everything,
we obtain

‖y −AxK‖22 ≤
‖y −Ax0‖22

νL
+
‖Ax̃1 + e‖22

νL−1
+ · · ·+ ‖Ax̃

L−1 + e‖22
ν

+ ‖Ax̃L + e‖22.

Taking into account that x− x̃0 is supported on S0 ∪U0 = S0, the definition of x0 implies that
‖y −Ax0‖22 ≤ ‖y −A(x− x̃0)‖22 = ‖Ax̃0 + e‖22, hence

‖y −AxK‖22 ≤
L∑
`=0

‖Ax̃` + e‖22
νL−`

≤
L∑
`=0

2(‖Ax̃`‖22 + ‖e‖22)

νL−`
.

Let us remark that, for ` ≤ L− 1 and also for ` = L,

‖Ax̃`‖22 ≤ (1 + δs)‖x̃`‖22 ≤ (1 + δs)µ
L−1−`‖x̃L−1‖22.
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As a result, we have

‖y −AxK‖22 ≤
2(1 + δs)‖x̃L−1‖22

µ

L∑
`=0

(
µ

ν

)L−`
+ 2‖e‖22

L∑
`=0

1

νL−`

≤ 2(1 + δs)‖x̃L−1‖22
µ(1− µ/ν)

+
2‖e‖22
1− ν

.

We choose µ = ν/2 so that µ(1 − ν/µ) takes its maximal value ν/4. It follows that, with
α :=

√
8(1 + δs)/ν and β :=

√
2/(1− ν),

(11) ‖y −AxK‖2 ≤ α ‖x̃L−1‖2 + β ‖e‖2.

On the other hand, with γ :=
√

1− δs+K , we have

‖y −AxK‖2 = ‖A(x− xK) + e‖2 ≥ ‖A(x− xK)‖2 − ‖e‖2
≥ γ ‖x− xK‖2 − ‖e‖2 ≥ γ ‖xSK‖2 − ‖e‖2.

We deduce that

(12) ‖x
SK‖2 ≤

α

γ
‖x̃L−1‖2 +

β + 1

γ
‖e‖2.

Let us now choose κ = d3/ρ2e, which guarantees that

(13)
α

γ
=

√
8(1 + δs)

(1− δs+K) exp(κρ2(1− δs+K))
< 1, since δs+K ≤ δ(1+3d3/ρ2e)s ≤ 1/6,

where we have used the fact that

K = κ(1 + · · ·+ 2L−2 + card(UL)) < κ(2L−1 + s′) ≤ 3κs′ ≤ 3d3/ρ2es.

Thus, in the case ((β + 1)/γ)‖e‖2 < (1− α/γ)‖x̃L−1‖2, we derive from (12) that

‖x
SK‖2 < ‖x̃L−1‖2, i.e., ‖(x

S0)S\SK‖2 < ‖(xS0)(S\S0)\UL−1‖2.

But according to the definition of UL−1, this yields

card(S \ SK) < card((S \ S0) \ UL−1) = s′ − 2L−1.

Continuing the algorithm from iteration K now amounts to starting it from iteration 0 with
x0 replaced by xK , therefore the induction hypothesis implies that

‖y −AxK+n̄‖2 ≤ C‖e‖2, n̄ := 2d3/ρ2e(s′ − 2L−1).

Thus, since we also have the bound K ≤ κ(1 + · · · + 2L−2 + 2L−1) < d3/ρ2e · 2L, the number
of required iterations satisfies K + n̄ ≤ 2d3/ρ2es′, as expected. In the alternative case where
((β + 1)/γ)‖e‖2 ≥ (1− α/γ)‖x̃L−1‖2, the situation is easier, since (11) yields

‖y −AxK‖2 ≤
α(β + 1)

γ − α
‖e‖2 + β ‖e‖2 =: C‖e‖2,

where the constant C ≥ 1 depends only on δ(1+3d3/ρ2e)s and on ρ. This shows that the induction
hypothesis holds when card(S \ S0) = s′. The proof is now complete.
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With Proposition 5 at hand, proving the main theorem is almost immediate.

Proof of Theorem 3. Given S ⊆ [N ] for which card(S) = s, we can write y = AxS + e′ where
e′ := AxS+e. Applying Proposition 5 to xS and e′ with S0 = ∅ then gives the desired inequality

‖y −Ax2rs‖2 ≤ C‖e′‖2 = C‖AxS + e‖2

for some constant C > 0 depending only on δ(1+3r)s and on ρ. Deducing the second part of the
theorem from the first part is rather classical (see [4], for instance), and we therefore omit the
justification of this part.

Remark. For the Pure Orthogonal Matching Pursuit algorithm, the parameter ρ depends
on the restricted isometry constants as ρ2 = 1 − δ2

n̄/(1 − δn̄). In this case, to guarantee that
α/γ < 1 in (13), we may choose κ = 3 when δs+K ≤ δn̄ ≤ 1/6. This would yield the estimate (4)
in 6s iterations provided δ10s ≤ 1/6, and estimate (5) in 12s iterations provided δ20s ≤ 1/6.

3 Pure OMP as a Weak OMP under RIP

This section is dedicated to the proofs of Theorems 1 and 2. The latter justifies that the Pure
Orthogonal Matching Pursuit algorithm is interpreted as a Weak Pure Orthogonal Matching
Pursuit algorithm with parameter depending on the restricted isometry constants.

Proof of Theorem 1. We start by noticing that the residual y−Axn+1 is orthogonal to the space
{Az, supp(z) ⊆ Sn+1}, and in particular to A(xn+1 − xn), so that

‖y −Axn‖22 = ‖y −Axn+1 +A(xn+1 − xn)‖22 = ‖y −Axn+1‖22 + ‖A(xn+1 − xn)‖22.

This establishes the first expression for ∆n. As for the other statements about ∆n, we separate
first the case jn+1 ∈ Sn. Here, the ratio |(A∗(y − Axn))jn+1 |/dist(ajn+1 , span{ai, i ∈ Sn}) is not
given any meaning, but we have ∆n = 0 in view of Sn+1 = Sn and xn+1 = xn, and the awaited
equality (A∗(y−Axn))jn+1 = 0 follows from (6). We now place ourselves in the case jn+1 6∈ Sn.
For the second expression of ∆n, we keep in mind that xn+1 − xn is supported on Sn+1, that
(A∗y)Sn+1 = (A∗Axn+1)Sn+1 , and that (A∗(y −Axn))Sn = 0 to write

‖A(xn+1− xn)‖22 = 〈xn+1− xn, A∗A(xn+1 − xn)〉 = 〈xn+1− xn, (A∗A(xn+1− xn))Sn+1〉
= 〈xn+1− xn, (A∗(y −Axn))Sn+1〉 = 〈(xn+1− xn)Sn+1\Sn , (A∗(y −Axn))Sn+1\Sn〉
= xn+1

jn+1(A∗(y −Axn))jn+1 .

For the third expression, we first notice that the step (GOMP2) is equivalent to

xn+1 = A†
Sn+1y, A†

Sn+1 := (A∗Sn+1ASn+1)−1A∗Sn+1 .
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We decompose ASn+1 as ASn+1 =
[
ASn ajn+1

]
. We then derive that

A∗Sn+1y =

[
A∗Sny

a∗jn+1y

]
, A∗Sn+1ASn+1 =

[
A∗SnASn A∗Snajn+1

a∗jn+1ASn 1

]
.

Among the several ways to express the inverse of a block-matrix, we select

(A∗Sn+1ASn+1)−1 =

[
M1 M2

M3 M4

]
,

where M3 and M4 (note that M4 is a scalar in this case) are given by

M4 = (1− a∗jn+1ASn(A∗SnASn)−1A∗Snajn+1)−1 = (1− a∗jn+1ASnA†Snajn+1)−1,

M3 = −M4a
∗
jn+1ASn(A∗SnASn)−1.

It follows from the block-decomposition of xn+1 = (A∗Sn+1ASn+1)−1A∗Sn+1y that

xn+1
j = M3A

∗
Sny +M4a

∗
jn+1y = M4a

∗
jn+1(−ASnA†Sny + y) = M4a

∗
jn+1(y −Axn).

We note that a∗jn+1(y−Axn) is simply (A∗(y−Axn))jn+1 . As forM4, we note thatASnA†Snajn+1 is
the orthogonal projection Pnajn+1 of ajn+1 onto the space {Az, supp(z) ⊆ Sn} = span{ai, i ∈ Sn},
so that

M4 = (1− 〈Pnajn+1 ,ajn+1〉)−1 = (1− ‖Pnajn+1‖22)−1 = dist(ajn+1 , span{ai, i ∈ Sn})−2.

Note that ‖Pnajn+1‖2 < ‖ajn+1‖2 = 1 justifies the existence of M4 and that ‖Pnajn+1‖2 ≥ 0

shows that M4 ≥ 1, which establishes the lower bound on ∆n.

Proof of Theorem 2. According to the previous arguments and to the definition of the Pure
Orthogonal Matching Pursuit algorithm, for any j 6∈ Sn, we have

|(A∗(y −Axn))jn+1 |2

1− ‖Pnajn+1‖22
=

|(A∗(y −Axn))jn+1 |2

dist(ajn+1 , span{ai, i ∈ Sn})2
≥ |(A∗(y −Axn))j |2

dist(aj , span{ai, i ∈ Sn})2

≥ |(A∗(y −Axn))j |2.

But, in view of |〈Au, Av〉| ≤ δk‖u‖2‖v‖2 for all disjointly supported u,v ∈ CN satisfying
card(supp(u) ∪ supp(v)) ≤ k, we have

‖Pnajn+1‖22 = 〈Pnajn+1 ,ajn+1〉 = 〈ASnA†Snajn+1 ,ajn+1〉 = 〈AA†Snajn+1 , Aejn+1〉

≤ δn+1‖A†Snajn+1‖2 ≤
δn+1√
1− δn

‖ AA†Snajn+1‖2 =
δn+1√
1− δn

‖Pnajn+1‖2.

After simplification, we obtain ‖Pnajn+1‖2 ≤ δn+1/(
√

1− δn). The condition δn̄ ≤ (
√

5 − 1)/2

ensures that this bound does not exceed one. It then follows that, for j 6∈ Sn,

|(A∗(y −Axn))jn+1 |2 ≥
(

1−
δ2
n+1

1− δn

)
|(A∗(y −Axn))j |2.

The latter also holds for j ∈ Sn, in view of (6), hence (2) is established when n + 1 ≤ n̄ with
ρ :=

√
1− δ2

n̄/(1− δn̄).
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