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Abstract. With the decrease in cost and increase in output of whole-genome shotgun technolo-
gies, many metagenomic studies are utilizing this approach in lieu of the more traditional 16S
rRNA amplicon technique. Due to the large number of relatively short reads output from whole-
genome shotgun technologies, there is a need for fast and accurate short-read OTU classifiers.
While there are relatively fast and accurate algorithms available, such as MetaPhlAn, MetaPhyler,
PhyloPythiaS, and PhymmBL, these algorithms still classify samples in a read-by-read fashion and
so execution times can range from hours to days on large datasets.

We introduce WGSQuikr, a reconstruction method which can compute a vector of taxonomic
assignments and their proportions in the sample with remarkable speed and accuracy. We demon-
strate on simulated data that WGSQuikr is typically more accurate and up to an order of magnitude
faster than the aforementioned classification algorithms. We also verify the utility of WGSQuikr
on real biological data in the form of a mock community.

WGSQuikr is a Whole-Genome Shotgun QUadratic, Iterative, K-mer based Reconstruction
method which extends the previously introduced 16S rRNA-based algorithm Quikr. A MATLAB
implementation of WGSQuikr is available at:

http://sourceforge.net/projects/wgsquikr.

1. Introduction

While 16S rRNA amplicon sequencing is a popular approach to reconstructing the taxonomic
composition of a bacterial community, there are some limitations to this approach. For example,
multiple copies of 16S rRNA genes in a single organism and nearly identical 16S rRNA genes in other
species can both lead to mis-estimates of bacterial compositions [6]. These and other considerations
have contributed to an increased usage of whole-genome shotgun (WGS) sequencing to analyze
microbial communities. However, the large amount of short reads resulting from WGS methods
(ranging from 70 million 200bp-length reads for Ion Torrent’s Proton Torrent sequencer, to 3 billion
100bp-length reads for Illumina’s HiSeq, to 15 million 36bp-length reads for Illumina’s MiSeq)
necessitates fast and accurate algorithms to process these large amounts of data. Current methods,
while relatively accurate, can still take from 8 hours (MetaPhyler [17]) to 4 days (PhymmBL [4])
to analyze a relatively small dataset of 70 thousand 300bp reads [17].

We introduce a method that extends the previously introduced 16SrRNA-based algorithm Quikr
[15], allowing for the accurate analysis of very large whole-genome shotgun datasets (billions of
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reads) on a laptop computer in under an hour. This is facilitated by leveraging ideas from com-
pressive sensing to reconstruct all taxonomic relative abundances of a bacterial community simul-
taneously (as opposed to read-by-read classification). Beyond significant speed improvements, we
demonstrate on simulated data that this method has, on average, better reconstruction fidelity
than any other technique to date, even down to the genus level.

Briefly, our method first measures the frequency of k-mers (for a fixed k ∼ 7) in a database
of known bacterial genomes, calculates the frequency of k-mers in a given sample, and then re-
constructs the concentrations of the bacteria in the sample by solving a system of linear equations
under a sparsity assumption. To solve this system, we employ MATLAB’s [1] iterative implementa-
tion of nonnegative least squares and hence we refer to this method as WGSQuikr : Whole-Genome
Shotgun QUadratic, Iterative, K-mer based Reconstruction. We point out that WGSQuikr has not
yet been optimized for performance but still demonstrates a significant speed improvement over
existing methods.

2. Methods

2.1. k-mer Training Matrix. The training step consists of converting an input database of whole
bacterial genomic sequences (with their associated plasmid sequences) into a k-mer training matrix.
For a fixed k-mer size, we calculate the frequency of each k-mer in each database sequence. Hence,
given a database of genome sequences D = {d1, . . . , dM}, the (i, j)th entry of the k-mer training

matrix A(k) is the frequency of the ith k-mer (in lexicographic order) in the jth sequence dj .
Herein, we consider a single, manually curated database D consisting of 1,401 bacterial genomes

and 1,082 plasmids, resulting in 2,483 unique sequences, which along with their taxonomic infor-
mation, were retrieved from NCBI [23] in October, 2012. The bacterial sequences in this database
cover 1,109 species and 614 genera.

2.2. Sample k-mer Frequencies. Given a sample dataset of WGS reads, we orient all the reads
in the forward direction, and then calculate the frequency of all k-mers in the entire sample. We
refer to this vector s(k) as the sample k-mer frequency vector.

2.3. Sparsity Promoting Quadratic Optimization. We assume that the given environmental
sample only contains bacteria that exist in the database D = {d1, . . . , dM} being utilized. Hence we
can represent the composition of the sample as a vector x ∈ R

M with nonnegative entries summing
to one (i.e. a probability vector) where xi is the concentration of the organism with genome di.
However, as will be demonstrated in subsection 3.4, WGSQuikr still performs adequately when the
sample does contain novel bacteria not in the database being utilized.

The problem at hand is then to reconstruct the bacterial concentrations x by solving the linear
system

(2.1) A(k)x = s(k).

Equation (2.1) is solved by using a sparsity-promoting optimization procedure motivated by tech-
niques used in the compressive sensing literature. Sparsity is emphasized since it is reasonable to
assume that relatively few bacteria from the database D are actually present in the given sample.
We use a variant of nonnegative basis pursuit denoising [10, 7] which reduces to a nonnegative
least squares problem. Unlike the 16S rRNA version of Quikr [15], WGSQuikr experiences no con-
vergence issues thanks to the inclusion of an adaptive choice of a regularization parameter which
is calculated individually for each dataset. The details regarding this procedure are contained in
Appendix B.4.
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2.4. Reconstruction Metrics. We denote the actual and predicted concentrations of the bacteria
as probability vectors x and x∗ respectively. The reconstruction metric primarily employed herein
is the ℓ1 distance between x and x∗: ||x− x∗||ℓ1 . This quantity takes values between 0 and 2 (with
perfect reconstruction being ||x − x∗||ℓ1 = 0) and is commonly referred to as “total error” (as it
is the total of the absolute errors). The term reconstruction fidelity will be used to communicate
generically how well x∗ approximates x. We will mainly be concerned with reconstruction fidelity
down to the genus level since the assumption given in subsection 2.3 indicates that WGSQuikr
is applicable in situations where the given metagenomic sample does not contain (too distantly
related) novel taxonomic units absent from the training database. This is more likely to be the
case at the genus level than at the species or strain level.

2.5. Simulated Data. To test the performance of the WGSQuikr method, the shotgun read sim-
ulator Grinder [2] was used to generate 720 simulated WGS datasets totaling over 1 billion reads.
These datasets have a wide range of differing characteristics designed to replicate a range of tech-
nologies in a variety of conditions (for example: differing species abundances, read coverages, read
lengths, error models, abundance models, etc.). The particular parameter values can be found in
Appendix A. We verified that our results do not depend on the randomly chosen bacterial species
in each dataset by re-running each simulation 5 times and observing that the results in section 3
do not change.

2.6. Mock Communities. To benchmark the Quikr method on real biological data, we examined
the “even” mock microbial community (NCBI SRR172902) developed by the Human Microbiome
Project [13]. This community contains known concentrations of bacteria from 21 different organisms
that span a diverse range of properties (GC content, genome size, etc.).

3. Results

There are many whole-genome shotgun metagenomic classifiers that WGSQuikr can be com-
pared to. A selection includes NBC [27, 22], Phymm [4], PhymmBl [4, 5], MetaPhyler [17], RITA
[18], PhyloPythiaS [20], MetaPhlAn [24], Genometa [9] and MetaID [25].Typically, these algorithms
classify a sample in a read-by-read fashion against a known database. Briefly, NBC accomplishes
this in a Bayesian framework utilizing k-mer counts. Phymm and PhymmBL use interpolated
Markov models to characterize variable-length oligonucleotides. MetaPhyler and MetaPhlAn use
clade-identifying marker genes. Genometa and RITA are BLAST-based techniques, and MetaID
uses large common and unique k-mers to classify reads. It has been shown [24, 9, 17] that the meth-
ods roughly rank in terms of increasing execution time as: MetaPhlAn, MetaPhyler, PhyloPythiaS,
Phymm, PhymmBL, NBC, Genometa, and RITA (MetaID [25] details no run-time data).

WGSQuikr differs from all of these methods as it classifies an entire dataset simultaneously
rather than in a read-by-read fashion. Furthermore, the other k-mer based techniques typically
use k-mers for k ≥ 12, whereas WGSQuikr uses k ∼ 7. As WGSQuikr is intended to be used
as a fast classification method at a taxonomic level in which few novel taxa appear, we choose to
compare to the two fastest methods available: MetaPhlAn and MetaPhyler. WGSQuikr and these
two algorithms will be evaluated on all simulated data and the mock community using the default
parameters.

3.1. Speed Comparison. Throughout the following, we fixed the k-mer size at k = 7. We
observed the general trend that the algorithm execution time increased exponentially as a function
of k, while the ℓ1-error decreased roughly linearly. We chose k = 7 as this provided a reasonable
tradeoff between fast execution time and low reconstruction error. Figure 1 shows a log-log plot of
the execution time for WGSQuikr, MetaPhyler, and MetaPhlAn on datasets ranging from 100 reads
to 10 million reads of 75bp in length. Figure 1 includes the time required to form the sample k-mer
frequency vector for the WGSQuikr algorithm. As k = 7 is relatively small, the time required to
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Figure 1. Log-log plot of number of reads versus execution time (seconds) for
WGSQuikr, MetaPhyler and MetaPhlAn.

form this vector is negligible (e.g. for a sample with 1M 75bp reads, it takes less than 5 seconds to
form the sample 7-mer frequency vector). The execution time is nearly constant for WGSQuikr to
solve (2.1) via the algorithm detailed in B.2 and B.4. This is due to the algorithm taking as input
the k-mer frequency vector, whose size depends only on k, not the size of the given dataset. This
also explains the reason for the significant speed improvement of WGSQuikr: the entire sample
is classified simultaneously, as opposed to in a read-by-read fashion such as with MetaPhyler or
MetaPhlAn.

Figure 2 shows a box-and-whisker plot of the execution time for WGSQuikr, MetaPhyler, and
MetaPhlAn on the simulated datasets described in subsection 2.5. Note the significant improve-
ment in speed: the average execution time of WGSQuikr is over 6 times faster than the average
MetaPhyler execution time. For the larger datasets (5M reads), WGSQuikr is on average 27 times
faster than MetaPhyler and 5 times faster than MetaPhlAn.

3.2. Simulated Data Results.

3.2.1. Reconstruction Error. We evaluated the ℓ1-error at the genus level on the simulated datasets
and summarize the mean ℓ1-error at the genus level in table 1. The histogram in figure 3 shows
the ℓ1-error versus fraction of the simulated datasets for WGSQuikr, MetaPhyler, and MetaPhlAn.
Also included is a smooth kernel distribution approximation of each of the histograms (shown
as lines in figure 3) to emphasize how WGSQuikr typically has less error than MetaPhyler and
MetaPhlAn.

We hypothesize that the reason WGSQuikr demonstrates such an improvement in ℓ1-error over
MetaPhyler and MetaPhlan is WGSQuikr’s ability to very accurately reconstruct the frequency of
the most abundant organisms in a sample. Indeed, at the genus level, the mean ℓ1-error decreased
by 31% when focusing on only the top 10 most abundant genera. See subsection 3.3 for further
supporting evidence.

3.2.2. Reconstruction Fidelity vs Simulation Parameters. In order to investigate what properties of
a given dataset influence the reconstruction error of WGSQuikr, we grouped the simulated datasets
by each simulation parameter (number of reads, read length, abundance model, or diversity).
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Figure 2. Box-and-whisker plot of execution time (in minutes) on the simulated
experiments for WGSQuikr, MetaPhyler, and MetaPhlAn. The boxes demarcate
75% quantiles, whiskers demarcate range, and the vertical black bars are drawn at
the mean.

Table 1. Comparison of mean ℓ1-errors at the genus level (smaller values are better).

Method Mean ℓ1-error
WGSQuikr 0.644
MetaPhyler 1.006
MetaPhlAn 0.984

Figure 4 summarizes the mean error of WGSQuikr as a function of each one of these parameters,
and includes the results for MetaPhyler and MetaPhlAn for comparison.

It is interesting to note that WGSQuikr runs particularly well on short read data. Indeed,
WGSQuikr gave reasonable results when the read length was as short as 35bp or 50bp long, whereas
MetaPhyler and MetaPhlAn both failed to return results in such cases. Furthermore, WGSQuikr
exhibits roughly half as much ℓ1-error (0.52) as MetaPhyler (0.97) and MetaPhlAn (0.99) for
datasets consisting of reads normally distributed around 150bp.

Given a larger number of reads, a lower diversity, and an abundance model closer to exponential,
all three methods experienced improvement in reconstruction fidelity. Interestingly, longer read
lengths seemed to negatively impact all three methods.

3.3. Mock Community Results. To show that WGSQuikr can allow for fast, high-level analysis
of large datasets on a laptop computer, we analyzed the mock community described in subsection 2.6
using a 2013 Macbook Air. The dataset consists of over 6M reads of 75bp in length and is over
900MB in size. Using this laptop, which was equipped with a dual-core 1.3GHz Intel i5 processor,
WGSQuikr completed analyzing the mock community in less than 8 minutes and used no more
than 2GB of RAM. In contrast, using a much more powerful hexa-core 2.66GHz Intel Xeon X5650,
MetaPhyler took 5.5 hours and MetaPhlAn took 2.9 hours.
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Figure 3. Histogram of ℓ1-error versus fraction of simulated experiments at the
genus level for WGSQuikr, MetaPhyler, and MetaPhlAn.
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Figure 4. Mean ℓ1-error at the genus level as a function of simulated dataset
parameters for each method. MetaPhyler and MetaPhlAn failed to run on the
datasets where reads were 35bp or 50bp in length.
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The relative abundances of the organisms in the mock community are shown in figure 5 along
with their predicted abundance for all three methods. Eukaryota where not included in the training
databases of any of the methods, hence its absence in figure 5.
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Figure 5. Relative abundances at the phylum level for reconstructions of organisms
in the mock community.

As figure 5 indicates, out of all three methods, WGSQuikr recreates the relative abundance of
the most frequently occurring phyla most accurately, at the expense of less accurate abundance
estimation of the more rare phyla. This behavior was also observed at the genus level. This
indicates that WGSQuikr is an effective tool for rapidly determining the predominant structure of
a given metagenomic sample, at the expense of less accurate reconstruction of rare taxa.

3.4. Cross Validation. To gauge how well the WGSQuikr method will perform when the given
sample contains bacteria not in the database (simulating novelty), we performed a 10-fold cross-
validation. Throughout the cross-validation, the k-mer size was fixed at k = 7. The database D
was partitioned into 10 disjoint sets and 1/10th was set aside as testing data with the remaining
9/10ths used to form a new k-mer matrix. Grinder [2] parameters were then chosen to generate
a test sample from the testing data. In particular, these parameters were chosen as follows: read
lengths normally distributed with a mean of 150bp and a standard deviation of 5bp, 1M total
reads, a power law abundance model, a diversity of 10 species, and the homopolymer error model
as in [21]. The mean ℓ1-error was then taken over the choice of which 1/10th was the testing data.
Lastly, an average was taken over 100 iterates of this procedure.

Table 2. Results of 100 iterates of the 10-fold cross-validation procedure for
WGSQuikr at the phylum and genus levels.

Taxonomic Rank Mean ℓ1-error ± variance
Phylum 0.342± 0.0574
Genus 1.22± 0.013

Table 2 summarizes the results of this procedure. The small mean and variance indicates that
WGSQuikr performs well at the phylum level, even if a significant portion (10%) of the sample
contains sequences not present in the database. At the genus level, the reconstruction was less
accurate (compare to figure 3), indicating that WGSQuikr will benefit from the inclusion of as
many bacterial genomes as possible. Hence, WGSQuikr performs best at a taxonomic rank that
minimizes the number of novel taxa.
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4. Conclusion

WGSQuikr represents a new class of metagenomics algorithms, one in which the taxonomic
assignments of an entire WGS metagenome are computed, instead of performing the assignment
in a read-by-read fashion. This allows for nearly constant execution time and low memory usage,
and so is particularly well suited for analyzing very large datasets on a standard laptop computer.
In contrast to current methods such as MetaPhyler and MetaPhlAn, WGSQuikr can be used to
analyze metagenomes consisting of very short reads (such as the 35-50bp datasets generated by
Illumina’s MiSeq) in less than a few hours. As Illumina’s advertised quality scores for such short
read datasets are typically much higher than for longer read datasets, this may allow for more
accurate analysis of metagenomes in unprecedentedly short time frames.
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Appendix A. Design of Grinder Experiments

We detail here the production of the simulated data produced by the shotgun/amplicon read
simulator Grinder [2]. These datasets were designed to mimic reads generated by a variety of
Illumina platforms, and hence we set the read-length distributions to be normally distributed with
a variety of means which are summarized in table 3. An equal number of datasets were generated

Mean Standard Number of
(bp) Deviation (bp) Experiments
35 0 96
50 0 96
100 0 96
150 5 96
250 20 96
300 25 96
450 50 96
800 100 96

Table 3. Grinder experiment read lengths.

consisting of the following number of reads: 10K, 100K, 1M, 5M. Three different diversity values
were chosen to be 10, 20, and 50 with abundances modeled by using the following four distributions:
linear, uniform, power-law with parameter 0.750 and exponential with parameter 1. Homopolymers
of length n were generated by a normal distribution with mean n and variance 0.15 ∗√n as in [21].
Sequencing errors were designed to model Illumina errors and used the 4th degree polynomial in
[14] with 80% of these errors set to be substitutions, while the remaining 20% set to be indels.
Reference sequences were sampled proportionally to their length to mimic the length bias seen in
WGS datasets.

Appendix B. Quikr Method Technical Details

B.1. Mathematical Formulation. Given the alphabet A = {A,C, T,G}, let A
n denote the set

of all words v of length |v| = n on A, and let A
∗ =

⋃

n≥0A
n be the set of all finite words on A.

Hence words containing non-ACTG characters are ignored. Let D = {d1, . . . , dM} be a database
of genomic sequences dj ∈ A

∗ and let S = {s1, . . . , st} be a set of sample sequences (the reads to
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be classified). Fix a k-mer size and endow A
k = {v1, . . . , v4k} with the lexicographic order. Let

occv(w) represent the number of occurrences (with overlap) of the subword v in the word w. That
is, for w, v ∈ A

n, let

occv(w) = |{j : wjwj+1 · · ·wj+|v|−1 = v}|.(B.1)

For j = 1, . . . ,M and i = 1, . . . , 4k, define the k-mer training matrix entrywise as

A
(k)
i,j =

occvi(dj)

|dj | − k + 1
.(B.2)

The matrix A(k) satisfies A
(k)
i,j ≥ 0 and is column-normalized, i.e.

4k
∑

i=1

A
(k)
i,j = 1 for all j = 1, . . . ,M.(B.3)

Define the sample k-mer frequency vector entrywise for i = 1, . . . , 4k as

s
(k)
i =

∑t
j=1 occvi(sj)

∑4k

l=1

∑t
j=1 occvl(sj)

.(B.4)

We assume even coverage of each genome. That is, we assume that the composition of the
bacterial community is represented by a probability vector x ∈ R

M satisfying the following: given a
database sequence d ∈ D, the set of reads {sd1, . . . , sdtd} ⊂ S coming from this sequence, and xd the
concentration in the sample of the bacteria corresponding to sequence d, for each i the following
holds:

∑td
j=1 occvi(s

d
j )

∑4k

l=1

∑td
j=1 occvl(s

d
j )

= xd ×
occvi(d)

∑4k

l=1 occvl(d)
.(B.5)

This means that the total k-mer count of all the read fragments corresponding to the sequence d
is proportional to the k-mer count of the sequence d itself, with the proportionality constant being
equal to the concentration of the sequence d in the sample S. Our assumptions imply that

A(k)x = s(k).(B.6)

We will try to recover the probability vector x satisfying xj ≥ 0 for all j = 1, . . . ,M and
∑M

j=1 xj = 1

from information in the form of equation (B.6).

B.2. Nonnegative Basis Pursuit Denoising. Given that a bacterial community is typically
distributed as a sparse vector x (a small percentage of all extant bacteria are actually present in a
given sample), we pursue sparsity-promoting minimizations involving the ℓ1-norm. Basis Pursuit
[10], called (BP) below, is one of the most popular methods. In our situation, it is natural to include
the nonnegativity constraint, leading to (BP≥0). We further modify the optimization by relaxing
the equality constraint to arrive at the regularized problem (REG2

1). Thus, the three optimization
problems considered are:

minimize
z∈RM

||z||1 subject to A(k)z = s(k),(BP)

minimize
z∈RM

||z||1 subject to A(k)z = s(k) and z ≥ 0,(BP≥0)

minimize
z∈RM

||z||21 + λ2||A(k)z − s(k)||22 subject to z ≥ 0,(REG2
1)

It can be demonstrated, thanks to (B.3), that (BP) and (BP≥0) are equivalent in the sense that
x is a solution of (BP) if and only if it is a solution of (BP≥0), and that the latter is approached
by solutions of (REG2

1) when λ → ∞, see [10].
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We shall solve (REG2
1) since it has the notable advantage of being transformed into a nonnegative

least squares problem. Indeed, with

Ã(k) :=

[

1 · · · 1
λA(k)

]

, s̃(k) :=

[

0

λs(k)

]

,(B.7)

the minimization (REG2
1) is equivalent to

minimize
z∈RM

||Ã(k)z − s̃(k)||22 subject to z ≥ 0.(NNLSQ)

B.3. Algorithmic Implementation. To solve (NNLSQ) we utilized MATLAB’s [1] implementa-
tion of lsqnonneg() which in turn is an implementation of the iterative Lawson-Hanson algorithm
described in [16]. To calculate the matrices A(k) and the vector s(k) we used a custom SML [19] sub-
word counting program written by Christopher Cramer and compiled for Linux using MLton [28].

B.4. Selection of λ. Parameter tuning is a common issue to be addressed when using regularized
optimization procedures to solve linear inverse problems [26, 3, 8]. Two common methods include
Generalized Cross Validation [11] and the L-Curve method [12]. The adaptive method by which
we select the λ used in (B.7) is similar in spirit to the L-Curve method. In every case, it was
observed that as a function of λ, the number of iterates necessary to solve (NNLSQ) via the Lawson-
Hanson algorithm was linear, then exponential, then non-increasing. Figure 6 demonstrates this
phenomenon for a sample dataset by plotting the number of iterates as a function of λ. Let its(λ)
be the number of iterates needed to solve (NNLSQ) via the Lawson-Hanson algorithm. It was
also observed that x was most accurately reconstructed at the λ for which the number of iterations
experienced its greatest increase. Figure 7 demonstrates this fact for an example dataset by plotting
the ℓ1-error as well as d

dλ
its(λ) as a function of λ, where d

dλ
its(λ) denotes the first differences of

its(λ).
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Figure 6. Number of iterates to solve (NNLSQ) as a function of λ.

With this information in hand, the following adaptive approach was used to choose λ. First, let
d
dλ
its(λt0:I:t1)) designate the first differences of its(λ) when λ ranges from t0 to t1 in increments of I.

We allowed λ to increase in increments of 100 from λ = 1 until a smoothing spline approximation
of d

dλ
its(λ1:100:t1) was shown to be negative for some t1. A smoothing spline approximation was

utilized because d
dλ
its(λt0:I:t1) is noisy when increasing λ in such large increments. Next, the

maximum of d
dλ
its(λ1:100:t1) with respect to λ was identified, call it λ = tM . Then the maximizer

of d
dλ
its(λtM−100:10:tM+100) was used as the value of λ to solve (NNLSQ). Clearly this method can
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Figure 7. ℓ1-error and first difference of number of iterates needed to solve
(NNLSQ) as functions of λ.

be refined further by taking smaller and smaller increments surrounding the maximizer of d
dλ
its(λ),

but we found this two-step approach to provide sufficient speed and accuracy improvements over
current methods.
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