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Abstract

A novel theory of sparse recovery is presented in order to bridge the standard compressive

sensing framework and the one-bit compressive sensing framework. In the former setting, sparse

vectors observed via few linear measurements can be reconstructed exactly. In the latter setting,

the linear measurements are only available through their signs, so exact reconstruction of sparse

vectors is replaced by estimation of their directions. In the hybrid setting introduced here, a

linear measurement is conventionally acquired if is not too large in absolute value, but otherwise

it is seen as saturated to plus-or-minus a given threshold. Intuition suggests that sparse vectors

of small magnitude should be exactly recoverable, since saturation would not occur, and that

sparse vectors of larger magnitude should be accessible though more than just their directions.

The purpose of the article is to confirm this intuition and to justify rigorously the following

informal statement: measuring at random with Gaussian vectors and reconstructing via an

`1-minimization scheme, it is highly likely that all sparse vectors are faithfully estimated from

their saturated measurements as long as the number of saturated measurements marginally

exceeds the sparsity level. Faithful estimation means exact reconstruction in a small-magnitude

regime and control of the relative reconstruction error in a larger-magnitude regime.

Key words and phrases: Compressive sensing, saturation, linear programming, restricted isometry

properties.

AMS classification: 94A12, 90C05, 60D05.

1 Introduction

This article considers a scenario where sparse vectors are to be recovered from few measurements

of an unconventional type. After putting the scenario in the context of standard and one-bit

compressive sensing, we motivate the relevance of saturated measurements, and we outline our

contribution towards the solution of the problem. We close this introductory section with an

account of specific notation used in the rest of the article.
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1.1 Standard and one-bit compressive sensing

Suppose that high-dimensional vectors x ∈ RN are acquired (‘sensed’) via linear measurements

y1 = 〈a1,x〉, . . . , ym = 〈am,x〉 given as inner products of x with prescribed vectors a1, . . . ,am ∈ RN .

In matrix form, this information reads y = Ax, where the rows of the matrix A ∈ Rm×N consist

of a>1 , . . . ,a
>
m. Without prior knowledge about the structure of the targeted vectors x ∈ RN , the

number m of measurements necessary for the recovery of x from y equals N , which is prohibitively

large. But it is conceivable that recovering vectors x ∈ RN belonging to a certain structured class

is possible from the ‘compressed’ information y = Ax ∈ Rm with m� N . As a matter of fact, the

theory of compressive sensing initiated in the seminal works of Candès et al. [7] and of Donoho [9]

made it apparent to the scientific community that a suitable choice of the measurement matrix

A ∈ Rm×N enables the recovery of all sparse vectors x ∈ RN acquired as y = Ax (the recovery

step can be performed using a variety of efficient procedures). One only needs the number m of

measurements to scale like the optimal order s ln(eN/s), where s denotes the sparsity level of the

targeted vectors x ∈ RN (i.e., these vectors have at most s nonzero entries). A self-contained

and comprehensive account of this theory of standard compressive sensing can be found in the

textbook/monograph [10].

In some practical situations, however, the precise values of 〈ai,x〉 are inaccessible, not only because

of inevitable measurement errors but also because these values must be quantized. Putting aside

sophisticated schemes such as Σ∆-quantization [12], we focus on the extreme scenario where one

bit of information about 〈ai,x〉 is retained, so that only y1 = sgn(〈a1,x〉), . . . , ym = sgn(〈am,x〉)
are available. In this setting, introduced in [5], one cannot aim at exact recovery of x ∈ RN but

rather at estimates of the type ‖(x/‖x‖2)−x]‖2 ≤ δ where x] is the output of a recovery procedure

utilizing y = sgn(Ax) ∈ {±1}m as an input (note that only the direction x/‖x‖2 of x ∈ RN can be

estimated, since sgn(Ax) is invariant under multiplication of x by a positive scalar). This objective

can be attained for all s-sparse vectors x ∈ RN (uniform guarantees) using optimization-based

procedures, provided that the number m of measurement scales like the order δ−γs ln(eN/s) (with

γ = 5 and γ = 12 in [17] and [18], respectively, but these powers of δ−1 are improvable1). The

existence of suitable measurement matrices A ∈ Rm×N in this regime of parameters (s,m,N) is

proved by probabilistic arguments, as in the case of standard compressive sensing. Contrary to the

standard case, though, A ∈ Rm×N cannot be taken as arbitrary subgaussian random matrices (e.g.

Bernoulli random matrices are not appropriate when targeting uniform guarantees) and are taken

to be Gaussian random matrices (or close, see [3]).

1This would follow from the results of [6]. For the recovery algorithm of [17], the number of measurements also

features an extra logarithmic factor, but [4] proved that it can be removed.
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1.2 Saturated measurements

As a generalization of the standard and one-bit compressive sensing situations just described, we

suppose that the vectors x ∈ RN are acquired via y1 = F(〈ai,x〉), . . . , ym = F(〈am,x〉) for some

prescribed vectors a1, . . . ,am ∈ RN and for some odd function F (for a general F , we can reduce to

this case by taking measurements in pairs (ai,−ai) and potentially doubling m). If F was strictly

increasing, then we would directly return to the standard case by preprocessing the measurement

yi with F−1, i.e., by forming y′i := F−1(yi) = 〈ai,x〉. Hence, it is only relevant to consider odd

functions that assign a common value to distinct elements. Since it is more than plausible that

physical sensors saturate above some threshold, we shall concentrate our attention on the saturation

function S = Sµ defined by

S(t) =


−µ, t ∈ (−∞,−µ],

t, t ∈ (−µ,+µ),

+µ, t ∈ [+µ,+∞).
-µ +µ

-µ

+µ

Thus, the s-sparse high-dimensional vectors x ∈ RN are observed via the saturated measurements

yi = S(〈ai,x〉), i = 1, . . . ,m,

written in condensed form as y = S(Ax). Intuitively, standard compressive sensing corresponds

to the case µ → ∞, while one-bit compressive sensing corresponds to the case µ → 0 (after

preprocessing the yi with a division by µ).

Examples of sensing technologies affected by saturation phenomena include photodiodes used in

cameras and recording devices for audio signals. In the latter case, one can already find significant

works based on sparse recovery techniques to reconstruct the ‘clipped’ audio signals, see e.g. [21, 2,

15, 22]. Saturation was also investigated in the exact context of compressive sensing [16]. In fact,

to be even more realistic, saturation was considered together with quantization in this article. So

the saturation function considered there was not exactly S, but a variant where the linear part is

replaced by a staircasing function. We will point out similarities and differences between this work

and ours in due course.
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1.3 Overview of the results

For sparse vectors x ∈ RN , if we know S(〈ai,x〉), i = 1, . . . ,m, then we also know sgn(〈ai,x〉), so

that techniques from one-bit compressive sensing allow us to estimate the direction of x. Can we

achieve more than this? Certainly not when x is very large in magnitude, since all the measurements

saturate, making x indistinguishable from any γx with γ > 1. But when x is very small in

magnitude, none of the measurements saturate, putting us in the standard compressive sensing

framework, so we expect exact recovery. In the intermediate regime where x is not too small nor

too large in magnitude, approximate recovery of x (i.e., of its direction and of its magnitude) should

be possible. The purpose of this paper is to formalize this statement. The measurement matrices

A ∈ Rm×N we shall consider are random matrices with independent Gaussian entries of mean zero

and standard deviation σ (unlike standard compressive sensing, we do not impose σ = 1/
√
m, which

is required for the restricted isometry property to hold). Instead, the ‘amplification parameter’ σ

interacts with the ‘saturation parameter’ µ and with the magnitude ‖x‖2. In fact, we anticipate

the ratio σ‖x‖2/µ to be significant, according to the observation that

P (〈ai,x〉 is saturated) = P (|〈ai,x〉| ≥ µ) = P (σ‖x‖2|g| ≥ µ) = P
(
|g| ≥ µ

σ‖x‖2

)
,

where g represents a standard Gaussian random variable. The recovery procedure we shall consider

is a sparsity-promoting optimization program involving the `1-norm. It is similar to a program

proposed in [16]. Precisely, given a vector y ∈ [−µ,+µ]m of saturated measurements, the recovery

procedure simply reads

(1) minimize
z∈RN

‖z‖1 subject to S(Az) = y.

After introducing slack variables c ∈ RN , this program can be recast as a linear program, namely

minimize
z,c∈RN

N∑
j=1

cj subject to −cj ≤ zj ≤ cj , for all j = 1, . . . , N,

and to


〈ai, z〉 ≤ −µ, if yi = −µ,
〈ai, z〉 = yi, if − µ < yi < µ,

〈ai, z〉 ≥ +µ, if yi = +µ.

Solving this problem using CVX [1] for several realizations of Gaussian random matrices A ∈ Rm×N

and of sparse Gaussian random vectors x ∈ RN suggests the experimental behavior depicted in

Figure 1 for the reconstruction error as a function of the magnitude ‖x‖2.

We can distinctly perceive the small-magnitude regime where exact recovery occurs. We also detect

another regime where the recovery error appears proportional to the magnitude ‖x‖2. The theorem

stated below rigorously confirms this observation.
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Figure 1: `1-reconstruction error for sparse vectors of varying magnitude acquired from saturated

measurements

Theorem 1. Suppose that the random matrix A ∈ Rm×N has independent N (0, σ2) entries.

(a) There exists an absolute constant α > 0 such that, with probability at least 1 − γ exp(−cm),

every s-sparse vector x ∈ RN satisfying σ‖x‖2 ≤ αµ is exactly recovered from y = S(Ax) as a

solution of (1), provided m ≥ Cs ln(eN/s);

(b) Given δ ∈ (0, 1) and any β larger than the absolute constant α, with probability at least

1 − γ exp(−cβδ2m), every s-sparse vector x ∈ RN satisfying αµ ≤ σ‖x‖2 ≤ βµ is approxi-

mately recovered from y = S(Ax) as a solution of (1) with relative error at most δ, provided

m ≥ Cβδ−4s ln(eN/s).

The constants C, c, γ > 0 are universal, while the constants Cβ, cβ > 0 depend only on β.

We point out that the large-magnitude regime, manifest for a fixed matrix A ∈ Rm×N , is only

transitioned into when considering random matrices A ∈ Rm×N . Indeed, as more and more random

measurements are taken, there are bound to be nonsaturated measurements, and these enhance the

reconstruction. However, while arbitrarily large β are allowed, the result becomes meaningless in

the sense that the requirement on m becomes too demanding and the success probability becomes

negligible. The remaining of this article is now dedicated to the proof of Theorem 1: Part (a)

is established in Section 2 and Part (b) is established in Section 3. The later, more technically

demanding, appears as our more original contribution, whereas Part (a) possesses a similar flavor

to the results of [16]. Indeed, [16] established recovery guarantees for two strategies to deal with a

small number of saturated measurements: simply discard them (saturation rejection) or incorporate
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them as constraints (saturation consistency). In both cases, the argument relied on a democratic

property of random matrices A ∈ Rm×N , as well as the proof that this property holds provided

m ≥ C(s+msat) ln((N+m)/(s+msat)), where msat denotes the number of saturated measurements.

One would retrieve a usual condition when msat is a constant, but notice that msat is in reality a

random variable which depends on the magnitude of x.

1.4 Notation

The set of all s-sparse vectors in RN is denoted by Σs, while the set of all effectively s-sparse vectors

in RN is denoted by Σeff
s , i.e.,

Σeff
s :=

{
x ∈ RN : ‖x‖1 ≤

√
s‖x‖2

}
.

Given a measurement vector y ∈ [−µ,+µ]m, we define the index sets Inonsat, Ipossat, and Inegsat

corresponding to nonsaturated, positively saturated, and negatively saturated measurements by

Inonsat := {i ∈ J1 : mK : |yi| < µ} of cardinality mnonsat,

Ipossat := {i ∈ J1 : mK : yi = +µ} of cardinality mpossat,

Inegsat := {i ∈ J1 : mK : yi = −µ} of cardinality mnegsat.

Often, the dependence on y is not explicitly stated because the context is clear, but sometimes

writing e.g. Inonsat(y) will prove necessary.

Given a matrix A and and index set I, the matrix AI represents the row-submatrix of A where only

the rows indexed by I are selected — note the deviation from the widespread usage in compressive

sensing where AI would represent a column-submatrix.

2 The small-magnitude regime

This section is devoted to proving Part (a) of Theorem 1. We first collect some supporting results

before turning to the proof itself.

2.1 Auxiliary lemmas

We start by stating a necessary and sufficient condition for a vector x ∈ RN acquired via y = S(Ax)

to be exactly recovered as a solution of (1).
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Lemma 2. Let x ∈ RN be acquired via y = S(Ax). Then x is the unique minimizer of ‖z‖1
subject to S(Az) = y if and only if

(2)
∑
j∈S

sgn(xj)uj <
∑
`∈S

|u`| for all u ∈ RN \ {0} obeying


〈ai,u〉 ≥ 〈ai,x〉+ µ, i ∈ Inegsat,

〈ai,u〉 = 0, i ∈ Inonsat,

〈ai,u〉 ≤ 〈ai,x〉 − µ, i ∈ Ipossat,

where S denotes the support of x.

Proof. Let us assume that (2) holds, and let z 6= x satisfy S(Az) = y. Writing z = x−u for some

u ∈ RN \ {0},

〈ai, z〉 ≤ −µ, i ∈ Inegsat becomes 〈ai,u〉 ≥ 〈ai,x〉+ µ, i ∈ Inegsat,

〈ai, z〉 = 〈ai,x〉, i ∈ Inonsat becomes 〈ai,u〉 = 0, i ∈ Inonsat,

〈ai, z〉 ≥ +µ, i ∈ Ipossat becomes 〈ai,u〉 ≤ 〈ai,x〉 − µ, i ∈ Ipossat.

These are the linear constraints in (2), so
∑

j∈S sgn(xj)uj <
∑

`∈S |u`| holds. It follows that

‖z‖1 =
∑
j∈S
|zj |+

∑
`∈S

|z`| ≥
∑
j∈S

sgn(xj)zj +
∑
`∈S

|z`| =
∑
j∈S

sgn(xj)xj −
∑
j∈S

sgn(xj)uj +
∑
`∈S

|u`|

>
∑
j∈S

sgn(xj)xj = ‖x‖1.

This proves that x is the unique minimizer of ‖z‖1 subject to S(Az) = y.

Conversely, let us assume that x is the unique minimizer of ‖z‖1 subject to S(Az) = y. Let

u ∈ RN \ {0} obey the linear constraints in (2). For t ∈ (0, 1), the vector tu also satisfies these

constraints (as a convex combination of u and 0, which both satisfy the constraints). Furthermore,

if t is small enough, then

sgn(xj − tuj) = sgn(xj) for all j ∈ S.

Defining z := x− tu, we easily check that S(Az) = y. The minimality of x therefore implies that

‖x‖1 < ‖z‖1. It follows that

‖x‖1 <
∑
j∈S
|zj |+

∑
`∈S

|z`| =
∑
j∈S

sgn(xj − tuj)(xj − tuj) +
∑
`∈S

t|u`|

=
∑
j∈S

sgn(xj)xj − t
∑
j∈S

sgn(xj)uj + t
∑
`∈S

|u`| = ‖x‖1 − t

∑
j∈S

sgn(xj)uj −
∑
`∈S

|u`|

 .

Rearranging this inequality yields
∑

j∈S sgn(xj)uj <
∑

`∈S |u`|, as expected.
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As a consequence of Lemma 2, we emphasize that the recovery of a sparse vector as solution of (1)

is guaranteed under the null space property, not for the matrix A itself but for a row-submatrix2.

Recall that a matrix B is said to satisfy the null space property (NSP for short) of order s if (see

e.g. [10, Definition 4.1])

‖vS‖1 < ‖vS‖1 for all v ∈ ker(B) \ {0} and all S ⊆ J1 : NK with card(S) ≤ s.

Corollary 3. Let x ∈ RN be a fixed s-sparse vector. If AInonsat(Ax) satisfies the null space property

of order s, then x is the unique minimizer of ‖z‖1 subject to S(Az) = S(Ax).

Proof. Let u ∈ RN\{0} obey the linear constraints in (2). In particular, we see that u belongs to the

null space of AInonsat(Ax). Thus, for any index S of size at most s, we have
∑

j∈S |uj | <
∑

`∈S |u`|.
We immediately derive, with S := supp(x), that

∑
j∈S sgn(xj)uj <

∑
`∈S |u`|. This establishes (2).

The announced result now follows from Lemma 2.

The difficulty in establishing that the row-submatix AInonsat(Ax) satisfies the null space property

for a Gaussian matrix A comes from the fact that the index set Inonsat(Ax) is random, too. So we

will show that the size mnonsat(Ax) of Inonsat(Ax) is suitably large and that all index sets I with

this suitably large size yield row-submatrices AI satisfying the null space property. The number

mnonsat(Ax) of nonsaturated measurement is intuitively large when ‖x‖2 is small. In fact, a relation

between ‖x‖2 and mnonsat(Ax) =
∑

iXi, with Xi = 1 if |〈ai,x〉| < µ and Xi = 0 otherwise, can

be obtained from Hoeffding’s inequality, but it will only be valid when x is fixed. To make our

results uniform over all sparse vectors x simultaneously, we will rely on the following lemma3 and

its corollary.

Lemma 4. Let δ ∈ (0, 1). Suppose that the random matrix A ∈ Rm×N has independent N (0, σ2)

entries. There are absolute constants C1, c1, γ1 > 0 such that, if m ≥ C1δ
−12s ln(eN/s), then with

probability at least 1− γ1 exp(−c1δ
4m), one has

(3)

∣∣∣∣∣〈sgn(Au),Av〉 −
√

2

π
σm

〈
u

‖u‖2
,v

〉∣∣∣∣∣ ≤ δ
√

2

π
σm‖v‖2

for all u,v ∈ RN that are sums of two effectively s-sparse vectors.

The property (3) was dubbed sign product embedding property in [14], but it was established earlier

in [18]. In fact, [18, Proposition 4.3] showed that, with failure probability at most γ exp(−cδ4m),

(3) is valid for all u,v in an arbitrary set K provided m ≥ Cδ−12w(K)2. Here, w(K) denotes the

mean width of K defined by

w(K) := E
[

sup
x∈K−K

〈g,x〉
]
,

2We also notice that letting µ→ ∞ in (2) yields the signed null space property relative to the fixed support S.
3the powers of δ are not optimal in Lemma 4 — our current rendition of the original result of [18] is not optimal

and this original result is not optimal either (see [6] for an improvement).
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where g ∈ RN represents a random vector with independent N (0, 1) entries. To derive Lemma 4,

we have taken K = (Σeff
s ∩BN

2 )− (Σeff
s ∩BN

2 ) and we have used [18, (3.3)] to bound its mean width

as w(K) ≤ 2w(Σeff
s ∩ BN

2 ) ≤ C ′
√
s ln(eN/s). As a matter of fact, the result in this section only

uses the instantiation of (3) to the case u = v. This result has a ‘restricted isometry flavor’ and

can also be obtained via the more classical strategy of concentration inequality followed by covering

arguments or via a more direct route still involving mean widths, as in [20] or [19, Corollary 2.3].4

Corollary 5. Let δ ∈ (0, 1). Suppose that the random matrix A ∈ Rm×N has independentN (0, σ2)

entries. There are absolute constants C1, c1, γ1 > 0 such that, if m ≥ C1δ
−12s ln(eN/s), then with

probability at least 1− γ1 exp(−c1δ
4m), one has

(4) (1− δ)
√

2

π
σm‖u‖2 ≤ ‖Au‖1 ≤ (1 + δ)

√
2

π
σm‖u‖2

for all u ∈ RN that are sums of two effectively s-sparse vectors.

2.2 Main result

It is time to prove Part (a) of Theorem 1. In the formal statement below, ∆(y) denotes the output

of the recovery scheme (1).

Proposition 6. Suppose that the random matrix A ∈ Rm×N has independent N (0, σ2) entries.

There are absolute constants C, c, γ, α > 0 such that, if m ≥ Cs ln(eN/s), then with probability at

least 1− γ exp(−cm), one has

∆(S(Ax)) = x

for all s-sparse x ∈ RN satisfying σ‖x‖2 ≤ αµ.

Proof. We select the constant α ∈ (0, 1/2) small enough so that α ln(e/α) ≤ c′/4, where c′ > 0 is

an absolute constant appearing later in the proof. By Corollary 3, we have

P(∆(S(Ax)) 6= x for some s-sparse x ∈ RN with σ‖x‖2 ≤ αµ)

≤ P(AInonsat(Ax) fails the NSP of order s for some s-sparse x ∈ RN with σ‖x‖2 ≤ αµ)

≤ P(mnonsat(Ax) < (1− α)m for some s-sparse x ∈ RN with σ‖x‖2 ≤ αµ)(5)

+ P(AI fails the NSP of order s for some I ⊆ J1 : mK of size ≥ (1− α)m).(6)

With the constant C chosen so that C ≥ 412C1, we can place ourselves in the conditions of

applicability of Corollary 5 with δ = 1/4. Thus, for any s-sparse x ∈ RN with σ‖x‖2 ≤ αµ, we

have, on the one hand,

‖Ax‖1 ≤
(

1 +
1

4

)√
2

π
σm‖x‖2 ≤ mσ‖x‖2 ≤ mαµ,

4such approaches would improve the powers of δ, too.
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and, on the other hand,

‖Ax‖1 =
m∑
i=1

|〈ai,x〉| ≥
∑

i∈Isat(Ax)

|〈ai,x〉| ≥
∑

i∈Isat(Ax)

µ = msat(Ax)µ.

Putting these two inequalities together yields

msat(Ax) ≤ αm, i.e., mnonsat(Ax) ≥ (1− α)m.

This shows that the probability in (5) is bounded above by

γ1 exp(−c1m/256).

Next, it is known that a random matrix A′ ∈ Rm′×N with independent N (0, σ2) entries satisfies

the null space property of order s with probability at least 1− 2 exp(−c′m′ + c′′s ln(eN/s)), where

c′, c′′ > 0 are absolute constants. Consequently, in view of∑
m′≥(1−α)m

(
m

m′

)
=
∑
k≤αm

(
m

k

)
≤
∑
k≤αm

mk

k!
≤
∑
k≤αm

(αm)k

k!

(
1

α

)αm
≤ eαm

(
1

α

)αm
=
( e
α

)αm
,

a union bound allows us to bound the probability in (6) by( e
α

)αm
2 exp

(
−c′(1− α)m+ c′′s ln

(
eN

s

))
≤ 2 exp

(
α ln

( e
α

)
m
)

exp

(
−c
′

2
m+ c′′s ln

(
eN

s

))
≤ 2 exp

(
−c
′

4
m+ c′′s ln

(
eN

s

))
≤ 2 exp

(
−c
′

8
m

)
,

where the last step used c′′s ln(eN/s) ≤ (c′/8)m, which comes from the requirementm ≥ Cs ln(eN/s)

with C ≥ 8c′′/c′. All in all, we have obtained

P(∆(S(Ax)) 6= x for some s-sparse x ∈ RN with σ‖x‖2 ≤ αµ)

≤ γ1 exp(−c1m/256) + 2 exp

(
−c
′

8
m

)
≤ γ exp(−cm)

for some appropriate constants c, γ > 0. The proof is now complete.

Remark. Bounding (6) essentially amounts to proving, in the terminology of [16], that Gaussian

matrices are democratic. Our argument is slightly different from the proof of [16] (see also [8])

as we do not need the auxiliary matrix [I A] ∈ Rm×(m+N), allowing us to invoke the more usual

condition m ≥ Cs ln(eN/s) and still deal with index sets I ⊆ J1 : mK whose complement can have

size proportional to m, not just constant. As another notable difference, we establish democracy

relative to the null space property rather than to the restricted isometry property. In fact, the

results of this section only relied on the null space property and the modified restricted isometry

property of Corollary 5 (the former actually being a consequence of the latter). Such properties are

more generally valid for subexponential random matrices, see [11] to guide the reasoning. Thus,

exact recovery in the small-magnitude regime will also occur for random matrices which are not

Gaussian nor subgaussian. In the intermediate-magnitude regime, the arguments proposed in the

next section appear tied to the Gaussian case. It is plausible, however, that the results can extend

beyond the subgaussian case.
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3 The intermediate-magnitude regime

This section is devoted to proving Part (b) of Theorem 1. Again, we first collect some supporting

results before turning to the proof itself.

3.1 Auxiliary lemmas

The subsequent arguments rely in part on a property established in [19, Theorem 3.1] concerning

random tessellations of the ‘effectively sparse sphere’. Note that, if we overlook the powers of δ,

then the result can easily be derived from Lemma 4. Note also that, if we concentrate on exact

sparsity rather than effective sparsity, then the earlier result of [13, Theorem 2] provides a stronger

statement in terms of powers of δ.

Lemma 7. Let δ ∈ (0, 1). Suppose that the random matrix A ∈ Rm×N has independent N (0, σ2)

entries. There are absolute constants C2, c2, γ2 > 0 such that, if m ≥ C2δ
−4s ln(eN/s), then with

probability at least 1− γ2 exp(−c2δ
4m), one has, for all u,v ∈ Σeff

s with ‖u‖2 = ‖v‖2 = 1,

[sgn(Au) = sgn(Av)] =⇒ [‖u− v‖2 ≤ δ].

The subsequent arguments also rely on a uniform concentration property for the `1-norm of vectors

of saturated measurements. We establish this property in the rest of this subsection. Its statement

involves a function S̃ = S̃µ associated to the saturation function S = Sµ. The link with the

expectation of the scaled and saturated standard normal random variable will be apparent later.

For the moment, we simply define the function S̃ as

S̃(t) =

√
2

π
t

(
1− exp

(
− µ

2

2t2

))
+ 2µQ

(µ
t

)
, t > 0.

Here we used the customary notation of Q-function for the tail probability of a standard normal

distribution, i.e., Q is the decreasing function from (−∞,+∞) into (0, 1) given by Q(t) = P(g ≥ t),
where g ∼ N (0, 1). It is worth pointing out that, if t ≤ βµ for some β > 0 and if τ := µ/t, then

(7) S̃(t) ≥
√

2

π
t

(
1− exp

(
−τ

2

2

))
+
t

β
2Q (τ) ≥ ηβt

for some ηβ > 0 depending only on β. The latter inequality used the fact that either 1−exp(−τ2/2)

or 2Q(τ) is larger than some absolute constant (since 1 − exp(−τ2/2) increases from 0 to 1 for

τ ∈ [0,∞) and 2Q(τ) decreases from 1 to 0 for τ ∈ [0,∞)). It is also worth pointing out that, if

t ≤ βµ, then

(8) S̃ ′(t) =

√
2

π

(
1− exp

(
− µ

2

2t2

))
≥ νβ, νβ :=

√
2

π

(
1− exp

(
− 1

2β2

))
.

11
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These observations being made, we can state and prove the aforementioned uniform concentration

property.

Lemma 8. Let δ ∈ (0, 1) and let β0 ≥ α0 > 0 be fixed. Suppose that the random matrix A ∈ Rm×N

has independent N (0, σ2) entries. There are constants C3 = C3(α0, β0), c3 = c3(β0), γ3 > 0 such

that, if m ≥ C3δ
−4s ln(eN/s), then with probability at least 1− γ3 exp(−c3δ

2m), one has

(1− δ)m S̃(σ‖u‖2) ≤ ‖S(Au)‖1 ≤ (1 + δ)m S̃(σ‖u‖2)

for all effectively s-sparse u ∈ RN satisfying α0µ ≤ σ‖u‖2 ≤ β0µ.

Proof. The proof consists of the several steps detailed below.

Expectation calculation: for any fixed u ∈ RN ,

E (‖S(Au)‖1) = mS̃(σ‖u‖2).

Indeed, since ‖S(Au)‖1 =
∑m

i=1 S(|〈ai,u〉|) and 〈ai,u〉 is a Gaussian random variable with mean

zero and standard deviation σ‖u‖2, it is enough to show that E(S(θ|g|)) = S̃(θ) when g ∼ N (0, 1)

and θ > 0. This simply follows from

E(S(θ|g|)) =

∫ ∞
−∞
S(θ|t|)exp(−t2/2)√

2π
dt = 2

[∫ µ/θ

0
θt

exp(−t2/2)√
2π

dt+

∫ ∞
µ/θ

µ
exp(−t2/2)√

2π
dt

]

=

√
2

π
θ

(
1− exp

(
− µ2

2θ2

))
+ 2µQ

(µ
θ

)
= S̃(θ).

Concentration inequality: For any fixed u ∈ RN with σ‖u‖2 ≤ β0µ,

P
(∣∣∣‖S(Au)‖1 −mS̃(σ‖u‖2)

∣∣∣ > εmS̃(σ‖u‖2)
)
≤ 2 exp

(
−
η2
β0
ε2m

2

)
.

We interpret ‖S(Au)‖1 as a function of the vectorization of σ−1A, which is a standard Gaussian

random vector of size mN . This is a Lipschitz function with constant
√
mσ‖u‖2, as seen from

∣∣‖S(Au)‖1 − ‖S(Bu)‖1
∣∣ =

∣∣∣∣∣
m∑
i=1

(|S(〈ai,u〉)| − |S(〈bi,u〉)|)

∣∣∣∣∣ ≤
m∑
i=1

|S(〈ai,u〉)− S(〈bi,u〉)|

≤
m∑
i=1

|〈ai,u〉 − 〈bi,u〉| =
m∑
i=1

|〈ai − bi,u〉| ≤
m∑
i=1

‖ai − bi‖2‖u‖2

≤
√
m

[
m∑
i=1

‖ai − bi‖22

]1/2

‖u‖2 =
√
m‖u‖2‖A−B‖2 =

√
mσ‖u‖2‖σ−1A− σ−1B‖2.

12
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In view of the concentration of measures for Lipschitz functions (see e.g. [10, Theorem 8.40]) and

of E(‖S(Au)‖1) = mS̃(σ‖u‖2), we obtain

P
(∣∣∣‖S(Au)‖1 −mS̃(σ‖u‖2)

∣∣∣ > εmS̃(σ‖u‖2)
)
≤ 2 exp

(
−ε

2m2S̃(σ‖u‖2)2

2mσ2‖u‖22

)
≤ 2 exp

(
−
η2
β0
ε2m

2

)
,

where the last step made use of (7).

Uniform concentration on effectively sparse hollowed balls: if m ≥ Cα0,β0δ
−4s ln(eN/s), then

P
(∣∣∣‖S(Au)‖1 −mS̃(σ‖u‖2)

∣∣∣ > δmS̃(σ‖u‖2) for some u ∈ Σeff
s with α0µ ≤ σ‖u‖2 ≤ β0µ

)
≤ γ exp

(
−cβ0δ2m

)
.

The proof of this statement — a reformulation of the statement of the lemma — is based on a

covering argument, starting with the following estimation of the covering number of the set Σeff
s ∩BN

2

of effectively s-sparse vectors with `2-norm at most equal to one:

N (Σeff
s ∩BN

2 , ρ) ≤ N (Σt ∩BN
2 , ρ/4) ≤

(
eN

t

)t(
1 +

8

ρ

)t
, t :=

⌈
4s

ρ2

⌉
.

We focus on justifying the first inequality, as the second inequality is classical. Let then ũ1, . . . , ũn
be the elements of a (ρ/4)-net of Σt ∩ BN

2 with n = N (Σt ∩ BN
2 , ρ/4), and let u1, . . . ,un be their

best approximations from Σeff
s ∩BN

2 . Given u ∈ Σeff
s ∩BN

2 , we consider an index set T of t largest

absolute entries of u, and we choose ũk such that ‖uT − ũk‖2 ≤ ρ/4. Then

‖u− uk‖2 ≤ ‖u− ũk‖2 + ‖ũk − uk‖2 ≤ 2‖u− ũk‖2 ≤ 2‖uT ‖2 + 2‖uT − ũk‖2

≤ 1√
t
‖u‖1 +

ρ

2
≤
√

s

4s/ρ2
+
ρ

2
= ρ,(9)

where the first inequality in (9) followed from [10, Theorem 2.5]. This proves that u1, . . . ,un is a

ρ-net for Σeff
s ∩BN

2 , hence establishes the required inequality5.

With ω := β0µ/σ, we now place ourselves in the situation where the concentration inequality holds

for all ωuk, k = 1, . . . , n, with the choices ε = δ/2 and ρ = [(5α0ηβ0)/(22β0)]δ. We also place

ourselves in the situation where the property of Corollary 5 holds with δ = 1/4. All of this occurs

with failure probability bounded by

n× 2 exp

(
−
η2
β0
ε2m

2

)
+ γ1 exp (−c1m/256) ≤ γ exp

(
−c′β0δ

2m+ c′′α0,β0δ
−2s ln

(
eN

s

))
≤ γ exp

(
−cβ0δ2m

)
,(10)

where the last inequality is a consequence of m ≥ Cα0,β0δ
−4s ln(eN/s) with the constant Cα0,β0

chosen large enough in comparison with c′′α0,β0
/c′β0 (and with C1). Under these conditions, we shall

5The result could also have been obtained using Sudakov minoration and known facts about mean widths.
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prove that |‖S(Au)‖1 −mS̃(σ‖u‖2)| ≤ δmS̃(σ‖u‖2) for all u ∈ Σeff
s with α0µ ≤ σ‖u‖2 ≤ β0µ. To

do so, consider such a vector u ∈ Σeff
s with α0µ/σ ≤ ‖u‖2 ≤ β0µ/σ = ω and chose uk ∈ Σeff

s ∩BN
2

such that ‖ω−1u− uk‖2 ≤ ρ, i.e., ‖u− ωuk‖2 ≤ ρω. Let us observe that∣∣∣‖S(Au)‖1 −mS̃(σ‖u‖2)
∣∣∣ ≤ ∣∣∣‖S(A(ωuk))‖1 −mS̃(σ‖ωuk‖2)

∣∣∣(11)

+m
∣∣∣S̃(σ‖u‖2)− S̃(σ‖ωuk‖2)

∣∣∣(12)

+ |‖S(Au)‖1 − ‖S(A(ωuk))‖1| .(13)

By the concentration inequalities, the right-hand side of (11) is bounded as∣∣∣‖S(A(ωuk))‖1 −mS̃(σ‖ωuk‖2)
∣∣∣ ≤ εmS̃(σ‖ωuk‖2) ≤ εmS̃(σ‖u‖2)+εm

∣∣∣S̃(σ‖u‖2)− S̃(σ‖ωuk‖2)
∣∣∣ .

The latter terms combines with the term in (12), which, in view of |S̃ ′(t)| ≤
√

2/π, is bounded as

m
∣∣∣S̃(σ‖u‖2)− S̃(σ‖ωuk‖2)

∣∣∣ ≤ m√ 2

π
σ |‖u‖2 − ‖ωuk‖2| ≤

4

5
mσ‖u− ωuk‖2 ≤

4

5
mσρω.

As for the term in (13), it reduces to

|‖S(Au)‖1 − ‖S(A(ωuk))‖1| =

∣∣∣∣∣
m∑
i=1

|S(〈ai,u〉)| − |S(〈ai, ωuk〉)|

∣∣∣∣∣ ≤
m∑
i=1

|S(〈ai,u〉)− S(〈ai, ωuk〉)|

≤
m∑
i=1

|〈ai,u− ωuk〉| = ‖A(u− ωuk)‖1 ≤
(

1 +
1

4

)√
2

π
σm‖u− ωuk‖2

≤ mσρω.

Altogether, we obtain

∣∣∣‖S(Au)‖1 −mS̃(σ‖u‖2)
∣∣∣ ≤ εmS̃(σ‖u‖2) +

(
9

5
+

4ε

5

)
mσρω ≤ δ

2
mS̃(σ‖u‖2) +

11

5
ρmβ0µ.

We conclude by noticing that

β0µ =
β0

α0
α0µ ≤

β0

α0
σ‖u‖2 ≤

β0

α0

1

ηβ0
S̃(σ‖u‖2),

so that the choice ρ := [(5α0ηβ0)/(22β0)]δ yields the announced result that

|‖S(Au)‖1 −mS̃(σ‖u‖2)| ≤ δmS̃(σ‖u‖2).

This estimate is valid for all u ∈ Σeff
s satisfying α0µ ≤ σ‖u‖2 ≤ β0µ with failure probability

bounded as in (10).
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3.2 Main result

It is finally time to prove Part (b) of Theorem 1. In the formal statement below, ∆(y) again denotes

the output of the recovery scheme (1).

Proposition 9. Let δ ∈ (0, 1). Suppose that the random matrix A ∈ Rm×N has independent

N (0, σ2) entries. For any β ≥ α, where α > 0 is the absolute constant from Proposition 6, there

are constants C ′ = C ′(β), c′ = c′(β) > 0 depending only on β and an absolute constant γ′ > 0 such

that, if m ≥ C ′δ−4s ln(eN/s), then with probability at least 1− γ′ exp(−c′δ4m), one has

‖x−∆(S(Ax))‖2 ≤ δ‖x‖2

for all s-sparse x ∈ RN satisfying αµ ≤ σ‖x‖2 ≤ βµ.

Proof. By possibly reducing ηβ, we may assume that κβ := 4/ηβ is an integer. Setting α0 := α/κβ,

and β0 = 2β, we place ourselves in the situation where

(i) the property of Corollary 5 holds for δ =
1

4
and s replaced by κ2

βs;

(ii) the property of Lemma 7 holds for δ = δ2 :=
δ

4
and s replaced by κ2

βs;

(iii) the property of Lemma 8 holds for δ = δ3 := min

{
αν2βδ

8 + αν2βδ
,
1

2

}
and s replaced by κ2

βs.

All of this occurs with failure probability bounded above by

γ1 exp(−c1m/256) + γ2 exp(−c2δ
4
2m) + γ3 exp(−c3(β0)δ2

3m) ≤ γ′ exp(−c′(β)δ4m),

provided that m ≥ max{412C1, C2δ
−4
2 , C3(α0, β0)δ−4

3 }κ2
βs ln(eN/κ2

βs), which is guaranteed by the

requirementm ≥ C ′(β)δ−4s ln(eN/s) for a sufficiently large constant C ′(β). Under these conditions,

we shall prove that, for any s-sparse x ∈ RN , we have

(14) ‖x− x]‖2 ≤ δ‖x‖2, where x] := ∆(S(Ax)).

For this purpose, we introduce the convex combination of x and x] defined by x[ = (1−λ)x+λx],

λ := min{1, ‖x‖2/‖x]‖2}, i.e.,

x[ =

 x], if ‖x]‖2 ≤ ‖x‖2,(
1− ‖x‖2
‖x]‖2

)
x +

‖x‖2
‖x]‖2

x], if ‖x]‖2 > ‖x‖2.

This auxiliary vector is introduced because ‖x[‖2 ≤ 2‖x‖2 ≤ 2βµ/σ is readily seen, while a similar

bound for ‖x]‖2 is not immediately obvious (although it is true as a consequence of the error bound

(14) to be established). We now claim that it is enough to prove that

(15) ‖x− x[‖2 ≤
δ

2
‖x‖2.
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Indeed, in case ‖x]‖2 ≤ ‖x‖2, the inequality ‖x− x]‖2 ≤ δ‖x‖2 is clear from the fact that x] = x[,

and in case ‖x]‖2 > ‖x‖2, rewriting (15) as ‖(‖x‖2/‖x]‖2)(x− x])‖2 ≤ (δ/2)‖x‖2 yields

‖x− x]‖2 ≤
δ

2
‖x]‖2 ≤

δ

2
‖x‖2 +

δ

2
‖x− x]‖2, hence ‖x− x]‖2 ≤

δ/2

1− δ/2
‖x‖2 ≤ δ‖x‖2.

So it now remains to validate (15). First, we observe that x[ is effectively (κ2
βs)-sparse. Indeed,

noticing that S(Ax[) = S(Ax), we have, on the one hand,

‖S(Ax[)‖1 = ‖S(Ax)‖1 ≥
(iii)

(1− δ3)mS̃(σ‖x‖2).

Since δ3 ≤ 1/2 and S̃(σ‖x‖2) ≥ ηβσ‖x‖2, we derive

(16) ‖S(Ax[)‖1 ≥
ηβ
2
mσ‖x‖2.

On the other hand, decomposing J1 : NK into groups T0, T1, T2, . . . of t = κ2
βs indices according to

decreasing magnitudes of the entries of x[, we have

‖S(Ax[)‖1 ≤ ‖Ax[‖1 =

∥∥∥∥∥∥A
∑
k≥0

x[Tk

∥∥∥∥∥∥
1

≤
∑
k≥0

∥∥∥Ax[Tk

∥∥∥
1
≤
(i)

(
1 +

1

4

)√
2

π
σm

∑
k≥0

‖x[Tk‖2.

Using ‖x[T0‖2 ≤ ‖x
[‖2 and the classical inequality

∑
k≥1 ‖x[Tk‖2 ≤ ‖x

[‖1/
√
t, we obtain

‖S(Ax[)‖1 ≤ σm

[
‖x[‖2 +

√
1

t
‖x[‖1

]
.

Taking into account that ‖x]‖1 ≤ ‖x‖1 to obtain

‖x[‖1 ≤ (1− λ)‖x‖1 + λ‖x]‖1 ≤ ‖x‖1,

we deduce from ‖x‖1 ≤
√
s‖x‖2 that

(17) ‖S(Ax[)‖1 ≤ σm
[
‖x[‖2 +

√
s

t
‖x‖2

]
= σm

[
‖x[‖2 +

1

κβ
‖x‖2

]
.

Combining (16) and (17) gives

‖x[‖2 ≥
[
ηβ
2
− 1

κβ

]
‖x‖2 =

1

κβ
‖x‖2,

where the last step followed from the choice of κβ. In particular, we notice that

‖x[‖1
‖x[‖2

≤ ‖x‖1
(1/κβ)‖x‖2

≤ κβ
√
s,

which justifies our claim that x[ is effectively (κ2
βs)-sparse.
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Next, we observe that the directions of x and x[ are close. To see this, we notice that both x and x[

are effectively (κ2
βs)-sparse and satisfy sgn(Ax) = sgn(Ax[) as a consequence of S(Ax) = S(Ax[),

hence

(18)

∥∥∥∥∥ x

‖x‖2
− x[

‖x[‖2

∥∥∥∥∥
2

≤
(ii)

δ2.

Finally, we prove that the magnitudes of x and x[ are close. Because both σ‖x‖2 and σ‖x[‖2 are

in the interval [αµ/κβ, 2βµ] = [α0µ, β0µ], we can invoke (iii) to obtain∣∣∣‖S(Ax)‖1 −mS̃(σ‖x‖2)
∣∣∣ ≤ δ3mS̃(σ‖x‖2),∣∣∣‖S(Ax[)‖1 −mS̃(σ‖x[‖2)
∣∣∣ ≤ δ3mS̃(σ‖x[‖2).

But since S(Ax) = S(Ax[), we derive that

m
∣∣∣S̃(σ‖x‖2)− S̃(σ‖x[‖2)

∣∣∣ ≤ δ3m
(
S̃(σ‖x‖2) + S̃(σ‖x[‖2)

)
≤ 2δ3

1− δ3
‖S(Ax)‖1 ≤

2δ3

1− δ3
mµ.

Moreover, thanks to (8), we have∣∣∣S̃(σ‖x‖2)− S̃(σ‖x[‖2)
∣∣∣ ≥ νβ0 |σ‖x‖2 − σ‖x[‖2|.

We deduce that the magnitudes of x and x[ satisfy (recall that β0 = 2β)

(19) |‖x‖2 − ‖x[‖2| ≤
2δ3

1− δ3

µ

ν2βσ
≤ 2δ3

1− δ3

‖x‖2
αν2β

.

We now wrap up the argument by validating (15) from (18) and (19) as follows:

‖x− x[‖2 =

∥∥∥∥∥‖x‖2
(

x

‖x‖2
− x[

‖x[‖2

)
+
(
‖x‖2 − ‖x[‖2

) x[

‖x[‖2

∥∥∥∥∥
2

≤ ‖x‖2

∥∥∥∥∥ x

‖x‖2
− x[

‖x[‖2

∥∥∥∥∥
2

+ |‖x‖2 − ‖x[‖2|

≤ δ2‖x‖2 +
2δ3

1− δ3

1

αν2β
‖x‖2 ≤

δ

2
‖x‖2,

where the last equality results from δ2 = δ/4 and δ3 ≤ αν2βδ/(8+αν2βδ). The proof is complete.
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2013.

[11] S. Foucart and M.-J. Lai. Sparse recovery with pre-Gaussian random matrices. Studia Math-

ematica, 200, 91–102, 2010.
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