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ABSTRACT

We study matrix completion with non-uniform, deterministic sampling patterns. We introduce a computable
parameter, which is a function of the sampling pattern, and show that if this parameter is small, then we
may recover missing entries of the matrix, with appropriate weights. We theoretically analyze a simple and
well-known recovery method, which simply projects the (zero-padded) subsampled matrix onto the set of
low-rank matrices. We show that under non-uniform deterministic sampling, this method yields a biased
solution, and we propose an algorithm to de-bias it. Numerical simulations demonstrate that de-biasing
significantly improves the estimate. However, when the observations are noisy, the error of this method can
be sub-optimal when the sampling is highly non-uniform. To remedy this, we suggest an alternative which
is based on projection onto the max-norm ball whose robustness to noise tolerates arbitrarily non-uniform
sampling. Finally, we analyze convex optimization in this framework.

1. INTRODUCTION

In the matrix completion problem, one is given a subset of the entries of a low-rank matrix and the goal is
to fill in the missing entries. There are broad applications including collaborative filtering,1 system identifi-
cation,2 sensor localization,3–5 rank aggregation,6 scene recovery in imaging,7,8 multi-class learning,9–11 and
many others. There are several proposed programs and algorithms which can take advantage of the low-rank
structure to complete the matrix. These include low-rank projection,12,13 and convex optimization.14,15

Fortunately, there is a strong theoretical backing for these methods.12,13,15–26 However, much of the the-
ory of matrix completion requires uniformly random sampling; or at least random (possibly non-uniform)
sampling.27–32 Thus, in practical applications in which one is given a sampling pattern with no model of a
random generating process, it is unclear the extent to which these theoretical results apply.

In this work, we examine the problem of matrix completion with deterministic sampling. To our knowl-
edge, there are not many works which give theoretical guarantees for matrix completion with deterministic
sampling pattern.33–36 The work of Heiman, Schechtman, and Shraibman,34 Bhojanapalli and Jain35 and
Li, Liang, and Risteski36 all relate the sampling pattern Ω to a graph whose adjacency matrix is given by
1Ω. Those works show that as long as this pattern is suitably close to an expander graph—in particular,
if the deterministic sampling pattern is sufficiently uniform—then efficient recovery is possible. The work
of Heiman et al. also discusses non-uniform sampling patterns, and they show that if a matrix completion
algorithm works well on a non-uniform random sampling pattern, then there exists a deterministic sam-
pling pattern on which it also does well. However, that work does not characterize which deterministic,
non-uniform sampling patterns are good. The work of Lee and Shraibman33 addresses this by introducing
a parameter which measures the complexity of the sampling pattern. Their parameter is given by solving a
semidefinite program involving the sampling pattern, and that work shows that if this parameter is small,
then the entries of the matrix can be recovered with appropriate weights. That work is quite general, and
bounds the reconstruction error under general algorithms of the form “find a matrix which is correct on the
observed entries, with minimal ‖ · ‖ norm,” for any norm ‖ · ‖. In particular, the results do not work with
noisy observations and do not apply to projection-based methods.

∗Simon Foucart, Department of Mathematics, Texas A&M University, College Station, TX, USA, E-mail: foucart@tamu.edu.
†Deanna Needell, Department of Mathematics, Univ. of California, Los Angeles, CA, USA, E-mail: deanna@math.ucla.edu.
‡Yaniv Plan, Department of Mathematics, Univ. of British Columbia, Vancouver, BC, Canada, Email: yaniv@math.ubc.edu.
§ Mary Wootters, Department of Computer Science and Electrical Engineering, Stanford University, Stanford, CA, USA,
Email: marykw@stanford.edu.



In this work, we continue in the same vein as Lee and Shraibman, by identifying a parameter of the
sampling pattern that guarantees good weighted recovery. Our parameter is in some sense a special case of
Lee and Shraibman, although because our choices are more specific, we are able to say more. In particular,
our parameter is easy to compute (without solving an SDP), and is a generalization of the spectral gap
approach in the uniform case. We show that if our parameter is small, then the missing entries of the matrix
can be estimated well, even in the presence of noise, and we analyze several efficient algorithms for doing
this.

More precisely, we show that projection-based methods for matrix completion are biased under such
non-uniform sampling, and we give a method to de-bias them, resulting in an algorithm to reconstruct a
matrix given deterministic non-uniform sampling patterns. Additionally, we propose and analyze another
method based on convex optimization. We conduct numerical simulations for a projection-based method
using real-data sampling patterns. These show that debiasing is vital for accurate matrix recovery.

1.1 Model

We wish to estimate a low-rank matrix M ∈ Rd1×d2 from noisy entries. As is standard in matrix completion,
we make a few assumptions about M . First, we assume that M is low-rank, and set r = rank(M). Second,
we need to assume that M is not too “spiky.” We set γ := ‖M‖∞ to be the largest entry of M in absolute
value.

Let Ω ⊂ {1, 2, . . . , d1} × {1, 2, . . . , d2} be the sampling pattern, i.e., the set of pairs of natural numbers
indexing the observed matrix entries. Let m := |Ω|. Let σ > 0 and let Z ∈ Rd1×d2 be a noise matrix with
independent N(0, σ2) entries. In this work, we suppose that we observe m noisy observations of the form

Yi,j = Mi,j + σZi,j , (i, j) ∈ Ω. (1)

Let PΩ : Rd1×d2 → Rd1×d2 be the projection onto the sampling pattern, i.e.,

PΩ(X)i,j =

{
Xi,j if (i, j) ∈ Ω,

0 if (i, j) /∈ Ω.

Given a matrix X ∈ Rd1×d2 , we define
XΩ := PΩ(X).

Then the observation model may be succinctly written as

YΩ = MΩ + ZΩ.

We use 1 ∈ Rd1×d2 to denote the matrix with all entries equal to 1 and ◦ to denote the Hadamard (entry-wise)
product. Thus, PΩ(X) = 1Ω ◦X.

1.2 Computable parameter

In the literature on matrix completion, and the closely related fields of low-rank matrix recovery37,38 and
compressive sensing ,39–41 parameters which determine that the problem set up is well conditioned are gener-
ally NP-hard to compute. For example, the restricted isometry constant of compressive sensing is NP-hard
to verify,42 and similarly for restricted isometry constants defined in the context of low-rank matrix recov-
ery, since the latter reduces to the former in the diagonal case.37 Despite much research into computable
parameters,43–46 the guarantees that can be made using parameters that are known to be computable in
polynomial time is generally far from optimal.43

Fortunately, the particular observation model of matrix completion has a special structure which allows
a computable parameter, as discussed above.33–36 In those previous works (except for that of Lee and
Shraibman33 which we discussed above), the matrix 1Ω is thought of as the adjacency matrix of a d-regular
graph. If the spectral gap of that graph is large—that is, if the second-largest eigenvalue is much smaller than



the largest—then the matrix can be efficiently estimated with near-optimal guarantees. These results require
that the top singular vectors of 1Ω be the all-ones vectors; in particular, the best rank-1 approximation of
1Ω must be equal to the all-ones matrix (after re-scaling). In this work, we extend this approach to settings
where this may not be the case.

To motivate our approach, consider two extreme cases. The first is the case discussed above. In this
case, the best rank-1 approximate to 1Ω is proportional to 1, and we can hope to recover all of the entries
of M . In the second case, suppose that 1Ω contains only a single row, which is all 1, and the rest is zero;
thus, 1Ω is itself rank 1, and is its own best rank-1 approximation. In this second case, it is clear that we
can recover M ◦ 1Ω, and nothing else. This motivated the following weighted approach: suppose that W is
the best rank-1 approximation to 1Ω; we will attempt to recover W ◦M .

To be precise, let W be any rank-1 matrix, so that every entry of W strictly greater than 0, but no
other assumption. (Our theory works whether or not W is the best rank-1 approximation to 1Ω, although
we encourage the reader to think of it that way). Let

λ := ‖1Ω −W‖ .

If W does happen to be the best rank-1 approximation to 1Ω, and if 1Ω is irreducible, then the Perron-
Frobenius theorem implies that all entries of W are greater than 0.47,48 In this case, λ is the second singular
value of 1Ω. Below, we show that if λ is small, then a low-rank matrix can be well-approximated just from
viewing entries on Ω.

We also show that the structure of W is important. Indeed, when W is not flat, the projection method
of Keshevan, Montanari and Oh12 gives a biased estimate; we show how to debias the estimate. Further,
the error bounds are weighted proportionally to W . This reflects the fact that W is larger in rows/columns
that are sampled more highly, and thus one expects to have more accurate estimation on these rows and
columns.

2. MAIN RESULTS

2.1 Low-rank projection

In this section, we estimate M using low-rank projection as suggested by Keshavan et al.12 Thus, let

M̂0 := arg min
rank(X)≤r

‖X − YΩ‖F . (2)

In words, we find the closest rank-r matrix to the zero-padded matrix YΩ. This can be accomplished simply
(and quickly) via a truncated singular value decomposition. Previous works12,13 have considered matrix
completion with uniform at random sampling—made even more uniform by trimming any rows or columns
that are sampled significantly more than the expected value. In this setting, those works suggest to rescale
the entire matrix M̂0 to give an estimate of M , and they show that the estimate is quite accurate. However,
in the non-uniform, deterministic case, it is unclear whether such a result should persist. In fact, in the non-
uniform case, we find that the estimate M̂ is biased, and different parts of the matrix need to be rescaled
by different weights. Thus set

M̂debias := W (−1) ◦ M̂0. (3)

Above and below, for a matrix X and real number t, we define X(t) to be entry-wise exponentiation, i.e.,

X
(t)
i,j := Xt

i,j .

We will need one extra piece of notation. For a matrix, A, let ‖A‖2,∞ by the largest Euclidean norm of
a row. Then set

ν = ν(Ω) := max(‖1Ω‖2,∞, ‖1TΩ‖2,∞).



Theorem 2.1 (Low-rank projection). Let M,YΩ follow the model in Section 1.1 and let d = d1 +d2.
Then, with probability at least 1− 1/d,∥∥∥M̂0 −W ◦M

∥∥∥
F
≤ 2
√

2 rλγ + 4
√

2
√
rν
√

log dσ

or, equivalently, ∥∥∥W ◦ (M̂debias −M)
∥∥∥
F
≤ 2
√

2 rλγ + 4
√

2
√
rν
√

log dσ.

Remark 1 (Interpreting the error bound). To help understand the error bound, let us compare
to the case of uniform random sampling, in which each entry of the matrix is observed with probability p
(independent of other entries). Then the expectation of the sampling pattern is E1Ω = p1, a natural rank-1
estimate of 1Ω. Further, it follows from Seginer’s theorem49 (see also [50, proof of Lemma 1]) that with
high probability λ ≤ O(

√
pd) if p ≥ log(d)/d. In this setting, the parameter η is simple to bound by, e.g.,

Hoeffding’s inequality, giving η ≤ O(
√
pd) with high probability. Also note the relationship between p and

Em, i.e., Em = pd1d2.

Then we may consider normalized parameters

W ′ :=
d1d2W

m
, λ′ =

√
d1d2

md
λ, η′ =

√
d1d2

md
η

and note that in the case of uniform sampling, the operator which takes the Hadamard product with W ′ (i.e.
W ′◦) acts as the identity, and λ′, η′ are O(1) with high probability. Then, one may write the error bound of
Theorem 2.1 as ∥∥∥W ′ ◦ (M̂debias −M)

∥∥∥
F√

d1d2

≤ 2
√

2λ′γ

√
dr2

m
+ 4
√

2ν′σ

√
dr log(d)

m
,

or, ignoring constants,∥∥∥M̂debias −M
∥∥∥2

F

d1d2
=

∥∥∥W ′ ◦ (M̂debias −M)
∥∥∥2

F

d1d2
≤ O

(
(λ′)2γ2 dr

2

m
+ (ν′)2σ2 dr log d

m

)
.

In other words, when m & drmax(r, log(d)), the right hand side becomes small and the estimate is more
accurate.

When the sampling is not uniform, one may still consider the normalized parameters; in this case the
Hadamard product with W ′ puts higher weight on the rows/columns that are more prevalently observed.

Remark 2 (Noise bound). Note that the noise term in the error bound is proportional ν. This
is maximized if a single row or column of Ω is entirely sampled, which is paradoxical, since more sampling
should not make the matrix completion problem harder. In fact, similar observations have been made before,12

in which the authors suggested to “trim” rows or columns that had too many entries. Further, the error bound
is tight which can be seen by taking r = 1 and M = 0 (or M ≈ 0), in which case M̂0 is the rank-1 projection
of the noise, and the factor of ν is unavoidable. While we found good noise resilience in our simulations, the
above arguments suggest that it is worth exploring other recovery methods. In the next section, we propose
a different projection-based algorithm whose noise bound tolerates non-uniform sampling. In the following
section, we give a convex-optimization method whose noise bound also tolerates non-uniform sampling.

2.2 Max-norm ball projection

The max-norm ball has proven to be an effective constraint set to promote low-rankness for the matrix
completion problem.14 We begin this section by describing some of its interesting and useful properties of
the max norm.



Given a matrix X, the max-norm is defined by

‖X‖max := min
X=UV >

‖U‖2,∞‖V ‖2,∞.

Let Bmax be the max-norm ball, that is

Bmax := {X ∈ Rd1×d2 : ‖X‖max ≤ 1}.

A result due to Grothendiek shows that Bmax closely contained in a polytope whose vertices are flat rank-1
matrices. Let F be the set of flat, rank-1, matrices, i.e.,

F := {uvT : u ∈ {+1,−1}d1 , v ∈ {+1,−1}d2}.

Then Grothendieck’s inequality (see [51, Chapter 10]) states that Bmax is nearly the convex hull of F .

Theorem 2.2 (Grothendieck’s Inequality).

conv(F) ⊂ Bmax ⊂ KG · conv(F)

where KG ≤ 1.783 is Grothendiek’s constant.

We also need the dual to the max norm. To be precise, given two real matrices A and B of the same
dimensions, we use the standard inner product 〈A,B〉 :=

∑
i,j Ai,jBi,j . We denote ‖·‖max∗ the dual norm

to the max norm, i.e., for a matrix X

‖X‖max∗ := max
A∈Bmax

〈A,X〉.

Grothendiek’s inequality implies that for a matrix X

‖X‖max∗ ≤ KG max
B∈F

〈B,X〉 (4)

Remark 3 (Max norm and rank). Given a rank-r matrix M with ‖M‖∞ ≤ γ, one has [52, Corollary
2.2]

‖M‖max ≤
√
rγ.

Thus, one may think of the max norm (squared) as a proxy for the rank of a flat matrix. In contrast to the
rank, the max norm is robust to small perturbations. In this section we do not assume that M has small
rank, only that (a weighted version of) it has small max norm.

We take our (biased) estimate of M to be the projection of YΩ onto the max-norm ball, where the norm
used to define distance in the projection is the dual to the max norm.¶

M̂0 := arg min
‖X‖max≤α

‖X − YΩ‖max∗ .

As in the previous section, it is vital to debias the estimate: M̂debias = W (−1) ◦ M̂0.

The recovery guarantees of this section will use a variation on the computable parameter of the last
section. Thus let

λ̃ :=
∥∥∥1 −W (−1) ◦ 1Ω

∥∥∥
max∗

. (5)

We note that this parameter is very similar to the one considered in the work of Lee and Shraibman.33

Remark 4 (Comparison of λ and λ̃). We note that it is less clear how to choose W to minimize λ̃ in
comparison to λ. However, λ̃ can be bounded proportionally to λ. Indeed, Grothendieck’s inequality implies
that

λ̃ ≤ KG

√
d1d2

∥∥∥1 −W (−1) ◦ 1Ω

∥∥∥
¶We thank R. Vershynin for sharing the idea of projecting using the dual norm; this approach was also used by

Lee and Shraibman.33



which can be further bounded by KG

√
d1d2

∥∥W (−1)
∥∥
∞ λ. Thus, by taking W equal to the rank-1 projection

of 1Ω one can bound λ̃ proportionally to the second singular value of 1Ω.

We are now in position to state our main theorem for max-norm ball projection.

Theorem 2.3 (Max-norm ball projection). Let M,YΩ follow the model in Section 1.1 and let
d = d1 + d2. Assume that ‖W ◦M‖max ≤ α. Then with probability at least 1− d,∥∥∥M̂0 −W ◦M

∥∥∥2

F
≤ 7.2λ̃α2 + 10ασ

√
dm.

or, equivalently, ∥∥∥W ◦ (M̂debias −M)
∥∥∥2

F
≤ 7.2λ̃α2 + 10ασ

√
dm.

2.3 Convex optimization with max norm

Above we considered projection based methods for matrix completion which are appealing due to their
simplicity (in particular the method of Section 2.1). Nevertheless, since only the entries on Ω are observed,
it is natural to minimize misfit constrained to those entries. We consider such a method in this section. As
in the previous section, we assume a bound on the max norm of M .

M̂ := arg min
‖X‖max≤α

‖XΩ − YΩ‖max∗ .

The solution does not need to be debiased, and the error bound is weighted slightly differently.

Theorem 2.4 (Max-norm constrained convex optimization). Let M,YΩ follow the model in
Section 1.1 and let d = d1 + d2. Assume that ‖W ◦M‖max ≤ α. Then with probability at least 1− d,∥∥∥W (1/2) ◦ (M̂ −M)

∥∥∥2

F
≤ 7.2α2λ

√
d1d2 + 10ασ

√
dm.

Remark 5 (Tightening λ for non-uniform sampling pattern). In fact, λ could be replaced with
a strictly smaller, but more exotic parameter. As seen from Equation (12) below, one could replace λ with

‖1Ω −W‖max∗√
d1d2

,

which could potentially result in an improved error guarantee, depending on the sampling pattern.

3. NUMERICAL RESULTS

In this section we illustrate the results of several numerical experiments for the method of Section 2.1. We
consider both a uniform at random sampling pattern and also a non-uniform sampling pattern given by real
data.

In our first experiments, for various values of r, we create a random 10,000 by 10,000 rank-r matrix.‖

We (add noise and) subsample 2.1% of the entries. We subsample at this rate so that it will match a
real data set described below. We consider estimates M̂0 and M̂debias as in (2) and (3), respectively,
which are computed with a truncated singular value decomposition given the correct value of r.∗∗ We

‖We construct a rank-r matrix by taking the product of two 10,000 by r factors with standard normal entries.
∗∗In practice this would need to be estimated via cross validation.



(a) Vanilla and debiased relative er-
ror, no noise, plotted against rank

(b) Vanilla and debiased weighted
relative error, no noise, plotted
against rank

(c) Debiased relative weighted error
plotted against noise to signal ratio.
Rank is 3.

Figure 1: 10,000 by 10,000 matrix, 2.1% of entries uniformly randomly subsampled.

(a) Vanilla and debiased relative er-
ror, no noise, plotted against rank

(b) Vanilla and debiased weighted
relative error, no noise, plotted
against rank

(c) Debiased relative weighted error
plotted against noise to signal ratio.
Rank is 3.

Figure 2: 10,000 by 10,000 matrix, 2.1% of entries sampled according to the taste music dataset.

give names vanilla method associated with M̂0 and debiased method associated with M̂debias. For an es-

timate M̂ , we consider both the unweighted relative error:
∥∥∥M̂ −M∥∥∥

F
/ ‖M‖F and the weighted relative

error
∥∥∥W ◦ (M̂ −M)

∥∥∥
F
/ ‖W ◦M‖F . We average each error over 20 experiments.

In Figure 1 we take the subsampling to be uniform at random, as is often considered in matrix comple-
tion, but is not the focus of this paper. One might not expect debiasing to have much effect under uniform
sampling, but surprisingly, even in this setting we find that the debiased estimate M̂debias performs signifi-
cantly better than M̂0. However, we note that the weighted relative error and the unweighted relative error
are nearly the same. We also plot the relative weighted error of the debiased method against the noise-to-
signal ratio ‖ZΩ‖F / ‖MΩ‖F . Notably the relative error is still well below 1 even with 2.1% sampling and
noise-to-signal ratio much higher than 1.

The setup of Figure 2, is the same as Figure 1 aside from one key difference: The sampling is taken from
real data generated by music listening history (songs vs users) — the taste music data set .53 We restrict
to the 10,000 most prolific song listeners and 10,000 songs which are most listened to. The corresponding
sampling pattern is sampled at 2.1%, albeit quite non-uniformly. In this case, one sees that debiasing is
vital. The vanilla method has unweighted relative error much larger than 1, whereas the debiased method
has unweighted relative error much less than 1. When we consider the weighted error, the vanilla method
deteriorates further and the debiased method improves. As can be seen by comparison of the noisy plots, the
debiased method, measured with weighted relative error, performs roughly the same with the non-uniform
real data as it does with uniform at random data.



4. PROOFS

4.1 Proof of Theorem 2.1.

Set H := M̂0 −W ◦M . The following lemma controls the operator norm of H, denoted ‖H‖.
Lemma 4.1. With probability at least 1− 1/d,

‖H‖ ≤ 2λ ‖M‖max + 4ν
√

log dσ. (6)

The theorem then follows quickly from this lemma. First, [52, Corollary 2.2] implies that ‖M‖max ≤
√
rγ.

Further,
‖H‖F ≤

√
rank(H) ‖H‖ .

Observe that rank(H) ≤ rank(W ◦M) + rank(M̂) ≤ 2r. Combine these inequalities with the operator norm
bound of Lemma 4.1 to prove the theorem.

Proof. [Proof of Lemma 4.1] By the triangle inequality

‖H‖ =
∥∥∥M̂0 − Y + Y −W ◦M

∥∥∥ ≤ ∥∥∥M̂0 − Y
∥∥∥+ ‖Y −W ◦M‖ .

By definition, M̂0 is a closest rank ≤ r matrix to Y in Frobenius norm, and equivalently, in operator norm.

Since rankW ◦M ≤ r , we have
∥∥∥M̂0 − Y

∥∥∥ ≤ ‖Y −W ◦M‖ and thus

‖H‖ ≤ 2 ‖Y −W ◦M‖ = 2 ‖1Ω ◦ Z + (1Ω −W ) ◦M‖ ≤ 2 ‖1Ω ◦ Z‖+ 2 ‖(1Ω −W ) ◦M‖ (7)

where the last inequality follows from the triangle inequality.

The following lemma controls ‖1Ω ◦ Z‖.
Lemma 4.2. With probability at least 1− 1/d,

‖1Ω ◦Z‖ ≤ 2ν
√

log dσ. (8)

It remains to bound ‖(1Ω −W ) ◦M‖. By [54, Corollary], we have

‖(1Ω −W ) ◦M‖ ≤ ‖1Ω −W‖ · ‖M‖max .

Plug this and the result of Equation (8) into Equation (7) to complete the proof.

Proof. [Proof of Lemma 4.2]

We will use55[Theorem 4.1.1] to control the norm of this random matrix. We first specialize the above
result to our setting.

Corollary 4.3 (Operator norm of Z ◦ B). Let Z ∈ Rd1×d2 have independent standard normal
entries. Let B ∈ Rd1×d2 be a fixed matrix. Set

ν(B) := max(‖B‖2,∞, ‖BT ‖2,∞).

Then, for all t ≥ 0,

Pr(‖B ◦Z‖ ≥ t) ≤ (d1 + d2) exp

(
−t2

2ν2(B)

)
.

The lemma is then proven by applying this corollary with B = 1Ω.



4.2 Proof of Theorem 2.3

The proof is similar to the proof of Theorem 2.1. The main difference is in the (much better) control of the
noise term. As above, set H := M̂0 −W ◦M . By duality, we have

‖H‖2F ≤ ‖H‖max · ‖H‖max∗ .

Observe that ‖H‖max ≤
∥∥∥M̂0

∥∥∥
max

+ ‖W ◦M‖max ≤ 2α be assumption on W ◦M and definition of M̂0. The

theorem is then proven by bounding ‖H‖max∗ as given in the following lemma.

Lemma 4.4. With probability at least 1− 1/d

‖H‖max∗ ≤ 2KGλ̃α+ 5
√
dmσ ≤ 3.6λ̃α+ 5

√
dmσ.

Proof. [Proof of Lemma 4.4] We have

‖H‖max∗ =
∥∥∥M̂0 − YΩ + YΩ −W ◦M

∥∥∥
max∗

≤
∥∥∥M̂0 − YΩ

∥∥∥
max∗

+‖W ◦M − YΩ‖max∗ ≤ 2 ‖W ◦M − YΩ‖max∗

since M̂ is the minimizer of the right-hand side. Further, by definition of Y ,

‖W ◦M − YΩ‖max∗ ≤ ‖W ◦M −MΩ‖max∗ + ‖ZΩ‖max∗ =
∥∥∥(1 −W (−1) ◦ 1Ω) ◦W ◦M

∥∥∥
max∗

+ ‖ZΩ‖max∗ .

(9)
The following lemma bounds the noise term.

Lemma 4.5. With probability at least 1− 1/d

‖ZΩ‖max∗ ≤ 2.5
√
dmσ.

It remains to bound
∥∥(1 −W (−1) ◦ 1Ω) ◦W ◦M

∥∥
max∗

. By Grothendiek’s inequality 2.2 we have∥∥∥(1 −W (−1) ◦ 1Ω) ◦W ◦M
∥∥∥

max∗
≤ KG max

B∈F
〈(1 −W (−1) ◦ 1Ω) ◦W ◦M,B〉

= KG max
B∈F

〈1 −W (−1) ◦ 1Ω,W
T ◦MT ◦B〉

≤ KG

∥∥∥1 −W (−1) ◦ 1Ω

∥∥∥
max∗

·max
B∈F

‖W ◦M ◦B‖max

= KG

∥∥∥1 −W (−1) ◦ 1Ω

∥∥∥
max∗

· ‖W ◦M‖max

≤ KGλ̃α. (10)

The second to last line follows since the max norm is invariant with respect to Hadamard product with any
matrix in F and the last line follows by definition. Insert the last inequality, and also the noise bound of
Lemma 4.5 into Equation (9), then insert the result into the equation above, to complete the proof.

Proof. [Proof of Lemma 4.5] Grothendieck’s inequality 2.2 implies that

‖ZΩ‖max∗ ≤ KG ·max
X∈F
〈ZΩ, X〉.

Note that |F| = 2d−1 and thus the right hand side is the maximum of 2d−1 N(0,mσ2) random variables.
We complete the proof with a standard tail bound. Indeed, it is well known that

Pr(N(0, 1) > t) ≤ 1

t
√

2π
e−

t2

2 , t > 0.



Thus, by the union bound, for any t > 0,

max
X∈F
〈ZΩ, X〉 ≤ t

√
mσ, with probability at least 1− 2d−1

t
√

2π
e−

t2

2 .

Pick t = 1.4
√
d, and note that 1) for this value of t the probability estimate is bounded by 1 − 1/d; 2)

KG · 1.4 ≤ 2.5 to complete the proof.

4.3 Proof of Theorem 2.4

Our proof is similar to the previous two. Set H := M̂ −M . By duality,∥∥∥W (1/2) ◦H
∥∥∥2

F
= 〈H,W ◦H〉 ≤ ‖H‖max ‖W ◦H‖max∗ .

We have ‖H‖max ≤ ‖M‖max +
∥∥∥M̂∥∥∥

max
≤ 2α. The theorem is then proven by bounding ‖W ◦H‖max∗ as

given in the following lemma.

Lemma 4.6. With probability at least 1− 1/d

‖W ◦H‖max∗ ≤ 3.6α
√
d1d2λ+ 5

√
dmσ.

Proof. [Proof of Lemma 4.6] By triangle inequality

‖W ◦H‖max∗ ≤ ‖(1Ω −W ) ◦H‖max∗ + ‖HΩ‖max∗ = I + II. (11)

Using the same steps that were used to derive Equation (10), we have

I ≤ 2KGα ‖1Ω −W‖max∗ ≤ 2KGα
√
d1d2λ ≤ 3.6α

√
d1d2λ. (12)

The second inequality follows by definition of ‖·‖max∗ and since every element of F has rank 1 and Frobenius
norm equal to

√
d1d2.

We now control II. Add and subtract YΩ inside the norm, and use triangle inequality to give

II ≤
∥∥∥M̂Ω − Y

∥∥∥
max∗

+ ‖MΩ − Y ‖max∗ ≤ 2 ‖MΩ − Y ‖max∗ = 2 ‖ZΩ‖max∗ ,

where the second inequality follows since M̂ is the minimizer of the misfit. Finally, from Lemma 4.5, we
have

‖ZΩ‖max∗ ≤ 2.5
√
dmσ, with probability at least1− 1

d
.

Combine the previous two equations to bound II and insert this bound, together with the bound on I from
Equation (12), into Equation (11) to complete the proof.
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