
Symbolic Spline Computations

Patrick Clarke Simon Foucart

June 14, 2013

1

Abstract

This paper introduces a new computational method in spline theory. It is particularly
useful, among other features, to determine dimensions of spline spaces. The method is
based on a conversion to commutative algebra and allows efficient Hilbert series calcu-
lations. It is not restricted to the bivariate and trivariate cases, to simplicial partitions,
nor to standard smoothness conditions. The SAGE implementation provides a means to
take a fresh look at Rose’s freeness conjecture, the swift verification of dimension formulas
previously postulated, and allows us to propose dimension formulas for triangulations with
hanging vertices.

1 Introduction

This paper introduces a new method based on commutative algebra for computing splines
satisfying smoothness conditions. There are almost no restrictions on the domain, on the
way it is subdivided, nor on the imposed smoothness conditions. Furthermore, we find that
many interesting questions about splines convert to classical and well-understood problems in
commutative algebra. For example, determining the dimension formulas of spline spaces with
prescribed smoothness and maximal total degree can be cleanly answered in terms of the Hilbert
series of a certain ideal. Additionally, once the problem has been translated into commutative
algebra, many existing computational commutative algebra software packages can be exploited.
We present here implementations of our method and several applications written in SAGE [21].

In Section 2, we begin by reviewing the definition of a spline function over a domain with
respect to a subdivision. We also clarify what “smoothness condition” means in terms of the
well-definedness of linear differential operators. The ideas are familiar, but making them precise
allows us to proceed carefully in our proofs. Furthermore, distinguishing between the spline
and the function it defines allows us to uniformly treat situations when the Zariski closure of
an element of the subdivision is not Rn. This is a desirable property when thinking about the
deformation theory of the subdivison.

With these definitions in place, Section 3 takes the first step towards the translation into
commutative algebra with Theorem 3.1. The idea is to convert questions about smoothness into
“ideal-difference” conditions. This theorem states that, given some fixed smoothness conditions,

2

there exist ideals Jjk such that a spline satisfies the smoothness conditions if and only if the
difference of its values on the jth and kth regions of the subdivision lie in Jjk. This theorem
actually goes further to say that any ideal-difference conditions can be translated back into
smoothness conditions.

It is not new to define splines by ideal-difference conditions. For example, Proposition 1.2 in
Billera–Rose [4] is a weaker version of the forward direction of Theorem 3.1. However, the result
here completely identifies smoothness conditions and ideal-difference conditions.

The translation into commutative algebra is completed by Theorem 3.2. Here we show that the
set of splines satisfying a family of smoothness conditions can be identified with an idealM in the
ring R[x1, . . . , xn][y1, . . . , ys]/〈y1, . . . , ys〉2, where s is the number of regions in the subdivision.
Furthermore, this identification sends a degree d spline to a degree d+ 1 polynomial.

Sections 4 and 5 are more technical. They justify some of the steps in the software imple-
mentation of the method. For example, Lemma 4.1 describes how to obtain generators for the
spline module by lifting M from the quotient to its preimage ideal M̃ in the polynomial ring
R[x1, . . . , xn][y1, . . . , ys]. Lemmas 5.1 and 5.2 justify replacing M with a certain leading-term
ideal in the Hilbert series computation.

Next, we present two applications. The first application, presented in Section 5, concerns the
Hilbert series. Computing the dimensions of spline spaces with a given maximal total degree
is notoriously difficult, even in dimension n = 2 (see e.g. [14, Chapter 9]). However, when
translated into commutative algebra, it can be interpreted as determining the Hilbert series of
a certain ideal. Nontrivial techniques regarding the computation of Hilbert series have been
around at least since Macaulay’s work in the early 1900’s [16]. The SAGE implementation
(described in Section 7) allows one to verify many of the spline dimension formulas conjectured
in Foucart–Sorokina [11] and to extend the work of Schumaker–Wang [20] beyond continuous
splines by producing dimension formulas for subdivisions with hanging vertices.

In Section 6, the second application addresses the question whether splines form a free mod-
ule. This question was first asked by Billera–Rose [5], and a conjecture relating freeness and
smoothness conditions was made by Rose [19]. In 2001, Dalbec–Schenck [8] suggested a counter-
example to Rose’s conjecture. Unfortunately, little work has been done since. It is still com-
pletely unknown when the algebra of spline functions is free over polynomials on the base.
With the help of computer implementations of the Logar–Sturmfels algorithm [15] by Barwick–

3

Stone [3] and Fabiańska [9], the routines here provide a means to systematically investigate the
question of freeness.

Finally, we have chosen to put the proofs of the mathematical statements in a section of their
own. This separates them from the main text and facilitates the use of the paper as a reference
for those using the computational techniques and implementations in their own research.

2 Basic Objects

Consider a domain, Ω ⊆ Rn, and a fixed subdivision, Σ = {σ1, . . . , σs}, of Ω by closed sets. A
spline over Ω with respect to Σ is an assignment of an n-variable polynomial, gj, to each region,
σj, such that there is piecewise function Ω → R whose value on σj is gj. For example, in a
subdivision known as the Alfeld split [1], Ω is the domain bounded by the simplex with vertices

{e1, e2, . . . , en,−e1 − e2 − · · · − en} ⊂ Rn,

where ei is the ith standard basis vector, and Σ is made up of regions

σj = {t1e1 + t2e2 + · · ·+ tn+1en+1, ti ≥ 0 for all i, t1 + t2 + · · ·+ tn+1 ≤ 1, and tj = 0}

where we denote −e1 − e2 − · · · − en by en+1. We write An for the n-dimensional Alfeld split.

An example of a spline function over the 2-dimensional Alfeld split is:

(A2) G(x1, x2) =


x1 for (x1, x2) ∈ σ1

x2 for (x1, x2) ∈ σ2

0 for (x1, x2) ∈ σ3

.

We denote this spline by
G = (x1, x2, 0).

One need not limit themselves to such prosaic examples. Any imaginable subdivision is possible.
For instance, one could consider set Σ = {σδ1,(a1,b1), . . . , σδs,(as,bs)} of horizontal (along x1 axis)
and vertical (along x2 axis) dowel shapes in R3:

σh,(a,b) = {(x1, x2, x3) | 8
√

(x1 − a)2 + x2
3 ≤ (x2 − b)− (x2 − b)2} and

σv,(a,b) = {(x1, x2, x3) | 8
√

(x2 − b)2 + x2
3 ≤ (x1 − a)− (x1 − a)2}

4

Figure 1: 2-dimensional Alfeld split with regions labelled.

and take Ω = ∪iσi to give a configuration as in Figure 2. With this, one could entertain
themselves recreating the motion of Reuben Margolin’s Square Wave [17] using triples of linear
splines which preserve the distance between the ends of the “dowels”.

Figure 2: Ω = Margolin Square Wave subdivision

Typically, we are interested in splines which satisfy some smoothness properties. More precisely,
at a point p ∈ Ω, one can restrict attention to those splines on which any element of a given set,
Dp, of linear differential operators has a well-defined value. A choice at each point of Ω of linear
differential operators is called a family of smoothness conditions if it satisfies the property:

Given a real-valued function h on Ω, whenever Dh is well defined for all p ∈ Ω and
all operators D ∈ Dp, then so is D(f · h) for any f ∈ R[x1, . . . , xn].

5

http://www.reubenmargolin.com/waves/Square/

For example, one may consider splines which define Cr functions on Ω. In this case, the
operators at any given point are those in the span of

{∂α1
x1
· · · ∂αn

xn |p, α1 + · · ·+ αn ≤ r}.

In the case of the 2-dimensional Alfeld split above, the spline (A2) is not a C1-spline. However,
the following spline is:

(C1(A2)) (x4
1 + 2x3

1x2 + x1x2, 8x
2
1x

2
2 − 6x1x

3
2 + x4

2 + x1x2, x1x2).

Smoothness conditions defined this way can also specify so-called “super-smoothness.” For
example, setting

Dp =

{
{∂α1

x1
· · · ∂αn

xn |p, α1 + · · ·+ αn ≤ 1} for p 6= 0
{∂α1

x1
· · · ∂αn

xn |p, α1 + · · ·+ αn ≤ 3} for p = 0

produces splines which are C1 everywhere, and C3 at the origin.

3 Conversion to Commutative Algebra

We denote the ring R[x1, . . . , xn] of n-variable polynomials by R, and the set of spline func-
tions which satisfy a family of smoothness conditions by S. The set S forms an R-algebra,
and by adding formal variables y1, . . . , ys to the ring R, S can be described entirely in terms
of certain ideals in R[y1, . . . , ys]. Furthermore, we can identify S with an ideal in the ring
R[y1, . . . , ys]/〈y1, . . . , ys〉2. Ultimately this allows us to systematically approach questions about
spline functions using Gröbner bases and routines that rely on them.

In the theorem below, we denote by I(σj ∩ σk) = {f ∈ R | f(p) = 0 for all p ∈ σj ∩ σk} the
set of polynomials that vanish on the intersection of σj and σk.

Theorem 3.1 The set of splines satisfying a family of smoothness conditions forms an R-
algebra and there exist ideals Jjk ⊆ I(σj ∩ σk) such that an s-tuple of polynomials G =
(g1, . . . , gs) is in this ring if and only if

(IC) gj − gk ∈ Jjk for all 1 ≤ j, k ≤ s.

6

Conversely, given any family of ideals, Jjk, such that Jjk ⊆ I(σj ∩σk), there is a corresponding
family of smoothness conditions whose splines are determined by the equations (IC).

As an example, consider the Alfeld split. A Cr-spline G = (g1, . . . , gn+1) over the Alfeld split
must satisfy (IC) for the ideals

Jjk = 〈 det([e1| · · · |êj| · · · |êk| · · · |en+1| x]) 〉r+1

where en+1 = −e1 − e2 − · · · − en, x = [x1, . . . , xn]>, and ̂ indicates omission of the column.
Notice that the smoothness condition is packaged into the ideal by taking the (r + 1)th power
of the ideal 〈 det([e1| · · · |êj| · · · |êk| · · · |en+1| x]) 〉. This observation relating ideal powers and
smoothness was first made in Proposition 1.2 of [4].

The other result needed to study S as a classical commutative algebra object is the following.

Theorem 3.2 The R-algebra S, as an R-module, is isomorphic to the module

(M) M =
⋂
jk

(Jjk · 〈yj + yk〉+ 〈y1, . . . , ŷj, . . . , ŷk, . . . , ys〉) ⊆ R[y1, . . . , ys]/〈y1, . . . , ys〉2,

where ̂ indicates omission of the variable.

The R-module isomorphism between S and M makes the identification

(g1, . . . , gs)↔ g1y1 + · · ·+ gsys.

4 Generating Splines

The most fundamental computation that has been implemented produces a list of splines which
generate S as an R-module. The term “generate” here is the usual sense for modules, i.e., a set
of generators of S is a set of splines

{G1 = (g11, g12, . . . , g1s), G2 = (g21, g22, . . . , g2s), . . . , G` = (g`1, g`2, . . . , g`s)} ⊆ S

7

such that any spline G ∈ S can be expanded as

(SG) G = c1G1 + c2G2 + · · ·+ c`G`

for (not necessarily unique) polynomials c1, . . . , c` ∈ R.

For example, splines which generate the C1-splines over the 2-dimensional Alfeld split are

(S1(A2)-gens) { G1 = (0, x2
1x

2
2 − 2x1x

3
2 + x4

2, 0), G2 = (x3
1, 3x1x

2
2 − 2x3

2, 0),
G3 = (x2

1x2, 2x1x
2
2 − x3

2, 0), G4 = (1, 1, 1) }

and the spline (C1(A2)) expands as

(x4
1 + 2x3

1x2 + x1x2, 8x
2
1x

2
2 − 6x1x

3
2 + x4

2 + x1x2, x1x2) = 3G1 + (x1 + x2)G2 + x1G3 + x1x2G4.

Generators for S appear as the coefficient vectors of the y-linear terms of a generating set for
M̃ . Explicitly, we have the following result (Recall M = M̃/〈y1, . . . , ys〉2).

Lemma 4.1 Let B denote any generating set for the ideal M̃. For each element b ∈ B, let b1

denote the y-linear term. Then the image of the set

{b1, b ∈ B}

under the map M̃ �M
∼→ S generates S as an R-module.

Theorem 3.2 and Lemma 4.1 imply that we can find a set of generating splines by computing
a Gröbner basis for the intersection

(M̃) M̃ =< y1, y2, . . . , ys >
2 +

⋂
jk(Jjk · 〈yj + yk〉+ 〈y1, . . . , ŷj, . . . , ŷk, . . . , ys〉)

⊆ R[y1, . . . , ys],

where ̂ indicates omission.

5 The Hilbert Series

Another computation that has been implemented produces the Hilbert series of a given ring
of splines. We denote those splines G = (g1, . . . , gs) satisfying deg gi ≤ d for all 1 ≤ i ≤ n by

8

Sd. When S is the set of Cr splines over Σ, the traditional notation in spline theory (see [14,
Chapter 5]) is Srd(Σ). For example,

(x3
1, 3x1x

2
2 − 2x3

2, 0), (x2
1x2, 2x1x

2
2 − x3

2, 0), (1, 1, 1) ∈ S1
3 (A2).

Given any space of polynomials, we also denote the subspace made up of polynomials of degree
≤ d by a subscript d.

The Hilbert series is the formal power series

HS(t) = (1− t) ·
∑
d≥0

(dimR Sd)td.

Its computation is particularly relevant in spline theory, because the generating function of the
sequence (dimR Sd)d≥0 of splines over a region in Rn takes the form (see [4])

(P)
∑
d≥0

(dimR Sd)td =
P (t)

(1− t)n+1

for some polynomial P (t) =
∑k?

k=0 akt
k with integer coefficients. Thus, the computation of HS

determines P and in turn yields the dimension formula

(DF) dimR Sd =
k?∑
k=0

ak

(
d+ n− k

n

)
.

For example, for C1-splines over the 2-dimensional Alfeld split, the Hilbert series and dimension
formula are

HS1(A2)(t) =
1 + 2t3

(1− t)2
, dimR S1

d(A2) =

(
d+ 2

2

)
+ 2

(
d− 1

2

)
.

In the technical discussion below, it is easier to work with the module M , so we take note of
the equality

HM(t) = HS(t) · t.

In the implementation of the computation of the Hilbert series1, we find the series

HM̃(t) and H〈y1,...,ys〉2(t)
1When asked to produce the Hilbert series of an ideal, I ⊆ R[y1, . . . , ys], SAGE returns the series for the

dimensions of the quotient, R[y1, . . . , ys]/I. So our implementation uses the equality: HI(t) = HR[y1,...,ys](t)−
HR[y1,...,ys]/I(t).

9

and use the following equality.

Lemma 5.1
HM(t) = HM̃(t)−H〈y1,...,ys〉2(t).

We use a leading-term ideal of M̃ to compute HM̃(t) rather than M̃ itself. This change is
justified by the fact that the Hilbert series depends only on the dimensions of the modules M̃d

and the following result.

Lemma 5.2 Let ≤ be a monomial order on R[y1, . . . , ys] such that, for any f ∈ R[y1, . . . , ys]d,
deg(f) = deg(lt(f)), and let L′ denote the leading-term ideal of an ideal L with respect to ≤,
then

dimR Ld = dimR L′d.

The only reason for replacing M̃ with a leading-term ideal is because SAGE quickly and effi-
ciently computes Hilbert series of homogeneous ideals, but refuses to perform the computation
for inhomogeneous ideals.

Verification of Foucart–Sorokina’s conjectures

In [11], Foucart–Soronkina made conjectures for dimension formulas of the form (DF) of a
number of tetrahedral subdivisions. The method was also based on the determination, for a
fixed smoothness r, of the polynomial P in (P). The coefficients were derived one by one
from the computation of dimR Srd(Σ) for d = 0, 1, 2, . . . using Alfeld’s 3-dimensional applet
[2]. The argument there depends on the ability to compute the dimensions up to d = 8r + 4.
Computational limitations prevented them from accessing examples with r > 3.

The method presented here works similarly, however moving to the leading-term ideal in
Lemma 5.2 vastly increases the speed at which these dimensions can be computed. For in-
stance, the Hilbert series for the 3-dimensional Alfeld split with r = 3 and r = 4, namely

HS3(A3) =
1 + 3t8

(1− t)3
, HS4(A3) =

1 + t9 + t10 + t11

(1− t)3
,

10

were computed in less than a second while the method of [11] required several days. No careful
performance assessment was made, but in this example there was at least a thousand-fold
increase in speed.

These computations support the conjectured formula in [11] for not only the 3-dimensional
Alfeld split, but for the arbitrary dimensional case. We have also verified the formulas they
suggested for other subdivisons, and invite the reader to do the same with our implementations
[7, 10].

Non-simplicial subdivisions

As we have pointed out, there is no limit to the kinds of subdivisions we can consider. For
instance, we can consider “triangulations” with hanging vertices, as in Figure 3. This is not a
simplicial complex since neither the intersection of the 1st and 2nd nor the intersection of the
1st and 3rd regions are facets of the 1st region. The dimension of the space of continuous splines

1 2

3
4

5

Figure 3: Example of a triangular subdivision with one hanging vertex.

over such triangulations is given in [20, Theorem 5.3] by dimS0
0 (Σ) = 1 and for d ≥ 1 by

dimS0
d(Σ) = VNH + Ec(d− 1) +NT

(
d− 1

2

)
.

Here, VNH , Ec and NT are the numbers of non-hanging vertices, composite edges, and triangles,
respectively. In particular, for the example in Figure 3, the dimension formula is

dimS0
d(Σ) = 6 + 10(d− 1) + 5

(
d− 1

2

)
, d ≥ 1.

11

Our implementation gives the Hilbert series and the dimension formula (in a different form
than above)

HS0(Σ)(t) =
1 + 3t+ t2

(1− t)2
, dimR S0

d(Σ) =

(
d+ 2

2

)
+ 3

(
d+ 1

2

)
+

(
d

2

)
.

More generally, computations for 0 ≤ r ≤ 12 and extrapolation of the behavior in r suggest
that, for any r ≥ 0,

HSr(Σ)(t) =
1 + 2tr+1 + t

3r
2

+1 + t
3r
2

+2

(1− t)2
, r even, HSr(Σ)(t) =

1 + 2tr+1 + 2t
3(r+1)

2

(1− t)2
, r odd.

6 The Question of Freeness

Another interesting implementation is one which determines if S is free over R, and if so
computes a “free basis”. In some situations, it may be sufficient to simply know whether or not
S admits a free basis. In other situations, it may be desirable to replace a given generating set
{G1, · · · , Gm} with the free basis {G′1, . . . , G′`}.

Recall that the ring of splines, considered as an R-module, is called free if there are generators
{G′1, . . . , G′`} for which the expansion in (SG) is unique for any G ∈ S:

G = c1G
′
1 + c2G

′
2 + · · ·+ c`G

′
`.

In this case, {G′1, . . . , G′`} is called a free basis.

For example, the collection (S1(A2)-gens) generates the C1-splines over the 2-dimensional Alfeld
split. However, these generators do not give unique expansions. For instance, there is the
following non-trivial relation:

2G1 + x2G2 − x1G3 + 0G4 = 0.

On the other hand, a free basis is given by the generating set

{G′1 = (x3
1, 3x1x

2
2 − 2x3

2, 0), G′2 = (x2
1x2, 2x1x

2
2 − x3

20), G′3 = (1, 1, 1)}.

12

Not all spline rings admit a free basis. An interesting example is that of Billera–Rose [5] in
which they consider C2-splines over a deformed octahedron with vertices

(1, 0, 0), (0, 1, 0), (1, 1, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1)

and subdivided into the eight tetrahedra formed as a convex combination of a facet and the
origin.

Figure 4: Billera–Rose non-free example.

The mathematics to determine if S has a free basis comes from the Quillen–Suslin theorem
[18, 22]. This theorem guarantees that S is free if and only if it is “locally free.” Once it is
known that S is free, the algorithm of Logar–Sturmfels [15] allows a free basis to be computed
from an arbitrary generating set.

Practically speaking, this means the following: Assume generators {G1, . . . , Gm} have been
obtained via the approach used in Section 4. Denote by G the s×m matrix whose nth column
contains the entries of Gn, and denote by R the matrix of column relations of G, i.e.

G · R = 0.

Let µ be the largest number for which there is a non-zero µ-minor of G (i.e., a µ×µ submatrix
with non-zero determinant). Then S is locally-free if and only if we have the equality of ideals

〈1〉 = 〈f | f is a µ-minor of R〉.

13

This equality can be checked using a Gröbner basis calculation.

Once it is known that S is locally free, a generating set for which expansions are unique
exists. Versions of the Logar–Sturmfels algorithm to find a free basis have been implemented
by Barwick–Stone [3] and Fabiańska [9].

Rose’s Conjecture

In [8], Dalbec–Schenck suggested a counter-example to a conjecture of Rose [19]. We have made
the surprising discovery that the splines in the Dalbec–Schenck example do not contradict the
Rose’s conjecture.

To be precise, Rose’s conjecture reads as follows.

Conjecture 6.1 Consider a triangulation, Σ, of a topological n-ball, Ω, in Rn. There is a
positive integer r0 such that the Cr-splines are free if and only if r < r0.

Dalbec–Schenck suggested that the ring of Cr-splines over

Σ = {σ1, σ2, σ3, σ4, σ5, σ6} ⊆ R3

where each σj is a convex hull of four vertices, namely

σ1 = conv{(0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3)}
σ2 = conv{(0, 0, 0), (3, 0, 0), (0, 3, 0), (1, 0,−3)}
σ3 = conv{(0, 0, 0), (−2,−2, 1), (0, 0, 3), (3, 0, 0)}
σ4 = conv{(0, 0, 0), (−2,−2, 1), (0, 0, 3), (0, 3, 0)}
σ5 = conv{(0, 0, 0), (−2,−2, 1), (1, 0,−3), (3, 0, 0)}
σ6 = conv{(0, 0, 0), (−2,−2, 1), (1, 0,−3), (0, 3, 0)}

is free for r ≤ 4 and r = 6, yet not free for r = 5.

14

Figure 5: Dalbec–Schenck example.

7 Implementation

This section describes several routines implemented in the files spline_routines.sage [7] and
SplineDim [10] using the algorithms described above. spline_routines.sage is a collection of
small SAGE routines which serve as a “proof-of-concept” of the computational techniques. The
first subsection focuses on few of the most useful routines in spline_routines.sage and pro-
vides an example of utilization. Passing appropriate input into the routine poly_splines(poly_list,
r) requires some moderate care. So we dedicate some additional explanation of its usage.

The second subsection presents a collection of routines [10] designed specifically for the compu-
tation of dimensions in spline theory. These routines are “pre-packaged” so that one can easily
jump in and begin using the software without time spent on trying to figure out how to use
spline_routines.sage.

7.1 spline_routines.sage

poly_splines(poly_list, r):
This routine returns the commutative algebraic data necessary to compute Cr splines of a
configuration of polyhedral regions. This data is in the form of a tuple (R, s, J) where R is

15

a polynomial ring from which the spline entries come, s is the number of polyhedral regions,
and J is a function which takes 0 ≤ j, k < s and returns the ideal of R giving the condition in
equation (IC).

The following two routines take input in the form (R, s, J). For instance, one can produce
this data from poly_splines(poly_list, r), or simply code it manually2.

spline_Hilbert_series(R, s, J):
This routine returns the Hilbert series as a rational function.

spline_module_generators(R, s, J):
This routine returns a list of spline module generators.

The last two routines take a list of spline module generators. This is usually obtained from
running spline_module_generators(R, s, J).

is_projective(smg):
This returns true if the spline ring is free, and false otherwise.

compute_free_basis(smg):
If the spline module is free, this routine returns a free basis of splines module generators.

As an example, we show the computation of the C1-splines over the T-mesh in Figure 6.3

This code should be run in SAGE, from a directory containing spline_routines.sage. SAGE
should be able to access Macaulay2 [12], and Barwick–Stone package, QuillenSuslin.m2,
should be on Macaulay2’s load-path.

2The possible subdivisions and smoothness conditions these routines can accept as input are limited only by
what the user is willing to manually code.

3Splines over T-meshes as discussed here were considered in [13] — we stress that these are not the so-called
T-splines

16

load spline_routines.sage

R1 = ((0 ,0) ,(1 ,0) ,(1 ,1) ,(1 ,2) ,(0 ,2))
R2 = ((1 ,1) ,(2 ,1) ,(2 ,2) ,(1 ,2))
R3 = ((2 ,1) ,(3 ,1) ,(3 ,2) ,(2 ,2))
R4 = ((1 ,0) ,(3 ,0) ,(3 ,1) ,(2 ,1) ,(1 ,1))

poly_list = (R1 , R2 , R3, R4)

(R, s, J) = poly_splines(poly_list , 1)

sHs = spline_Hilbert_series(R, s, J); print sHs

smg = spline_module_generators(R, s, J);
sm_is_free = is_projective(smg)

if sm_is_free:
print ’splines are free’
free_smg = compute_free_basis(smg)
print free_smg

else:
print ’splines are not free’
print smg

This gives the output:

(2*t^4 + t^2 + 1)/(t^2 - 2*t + 1)
splines are free
[
(0, 0, y0^2*y1^2 - 2*y0^2*y1 - 4*y0*y1^2 + y0^2 + 8*y0*y1 +

4*y1^2 - 4*y0 - 8*y1 + 4, 0),
(0, 0, 0, y0^2*y1^2 - 2*y0^2*y1 - 2*y0*y1^2 + y0^2 + 4*y0*y1 +

y1^2 - 2*y0 - 2*y1 + 1),
(0, y0^2 - 2*y0 + 1, y0^2 - 2*y0 + 1, y0^2 - 2*y0 + 1),
(1, 1, 1, 1)
]

17

To investigate other examples, one need only modify poly_list above.

1

2 3

4

Figure 6: T-mesh.

We have also created a file, examples.sage [6], which contains many examples. This includes
all the examples here and more, as well as a routine to check Rose’s conjecture on the Dalbec–
Schenck example.

The proper use of poly_splines(poly_list, r):

Each polyhedral region in poly_list is specified by points on its perimeter. This should include
any “hanging vertices,” as in Figure 3. It is not required that the specified points determine the
polyhedral region. However, this routine assumes that intersection of any two polyhedra in the
list equals the closure of an open set in the affine linear space spanned by the specified points
that the polyhedra have in common.

Configurations made up of convex polyhedral sets can always be described in this way. For
example,
poly_list = (
((1,0),(1,1),(1,2)),
((1,1),(2,1),(2,2),(1,2)),
((2,1),(3,1),(2,2)),
((1,0),(3,1),(2,1),(1,1)))
is another acceptable description of the T-mesh in Figure 6.

18

Further, it is possible to describe some configurations in which the polyhedra are not necessarily
convex, for example, the configuration in Figure 7 (left). However, splines over the configuration
in Figure 7 (right) cannot be described using this routine.

Figure 7: Left: configuration acceptable directly into poly_splines(poly_list, r); Right:
configuration requiring manual input of the J function.

7.2 SplineDim

Building on the previous implementation, we have created a tool designed specifically for spline
theorists investigating dimension formulas. The resulting software, called SplineDim, consists
of a collection of routines written in SAGE and of files containing a number of predefined
subdivisions. It is available online at [10], where one also finds a user’s guide complementing
the following short descriptions of the main routines.

spline_gf(Sigma, r):
This routine returns the generating function of the sequence

(
dimR Srd(Σ)

)
d≥0

in the form (P).

gf_to_dims(GF, d):
Given a generating function in the form (P), this routines outputs a list of d+ 1 values for the
dimensions corresponding to degrees 0, 1, . . . , d.

spline_dims(Sigma, r, d):
This routine combines the two previous ones without making a reference to the generating

19

function when returning the values for dimR Sr0(Σ), dimR Sr1(Σ), . . . , dimR Srd(Σ). If only the
value for dimR Srd(Σ) is sought, one can use spline_dim(Sigma, r, d).

8 Proofs

Theorem 3.1 The set of splines satisfying a family of smoothness conditions forms an R-
algebra, and there exist ideals Jjk ⊆ I(σj ∩ σk) such that an s-tuple of polynomials G =
(g1, . . . , gs) is in this ring if and only if

(IC) gj − gk ∈ Jjk for all 1 ≤ j, k ≤ s.

Conversely, given any family of ideals, Jjk, such that Jjk ⊆ I(σj ∩σk), there is a corresponding
family of smoothness conditions whose splines are determined by the equations (IC).

Proof Begin with a family of smoothness conditions D on Ω. Consider DG for a differential
operator D ∈ Dp and a spline function G = (g1, . . . , gs) ∈ R × · · · × R. For DG to be well
defined at p, we must have

(WD) Dgj = Dgk

whenever p ∈ σj ∩ σk. Equivalently,

D(gj − gk) = 0.

The definition of a smoothness condition requires that

D(f(gj − gk)) = 0

for all f ∈ R. Since D is linear this means J̃D = {h ∈ R |Dh = 0} is an ideal, and our equation
(WD) is equivalent to requiring that gj− gk must lie in J̃D whenever p ∈ σj ∩σk. Furthermore,
G must define function on Ω, so gj − gk ∈ I(σj ∩ σk).

Set JD = J̃D ∩ I(σj ∩ σk), and denote

Jjk =
⋂

p∈σj∩σk

⋂
D∈Dp

JD,

20

then we end up with the requirement

gj − gk ∈ Jjk.

Conversely, begin with a family of ideals Jjk ⊆ I(σj∩σk). Denote by S the subring of R×· · ·×R
defined by (IC).

Observe that S is made up of splines because if G = (g1, . . . , gs) ∈ S, then gj − gk ∈ I(σj ∩σk).
In other words, gj(p) = gk(p) for all p ∈ σj ∩ σk.

Consider p ∈ Ω, and set

(Jp) Jp =
⋂

p∈V(Jjk)

Jjk,

where V(Jjk) is the set of points at which all elements of Jjk vanish. Denote by Dp the linear
differential operators at p which annihilate Jp. Note that Dp carves-out exactly Jp:

(DJ) Jp = {h ∈ R | Dh = 0 for all D ∈ Dp}.

With these definitions, we know that S is contained in the splines satisfying the smoothness
conditions D.

Now consider an arbitrary spline G = (g1, . . . , gs). If G is not in S, then there is some jk such
that gj − gk 6∈ Jjk. This means at any p ∈ σj ∩ σk, there is some D ∈ Dp such that

D(gj − gk) 6= 0,

i.e., DG does not have a well-defined value.

Theorem 3.2 The R-algebra S, as an R-module, is isomorphic to the module

(M) M =
⋂
jk

(Jjk · 〈yj + yk〉+ 〈y1, . . . , ŷj, . . . , ŷk, . . . , ys〉) ⊆ R[y1, . . . , ys]/〈y1, . . . , ys〉2,

where ̂ indicates omission of the variable.

21

Proof Consider the surjective map of R-modules

〈y1, . . . , ys〉/〈y1, . . . , ys〉2 � R× · · · ×R︸ ︷︷ ︸
s−copies

which sends g1y1 + · · ·+ gsys to (g1, . . . , gs). The condition gj − gk ∈ Jjk is exactly satified by
elements of

Jjk · 〈yj + yk〉+ 〈y1, . . . , ŷj, . . . , ŷk, . . . , ys〉 ⊆ R[y1, . . . , ys]/〈y1, . . . , ys〉2,

where ̂ indicates omission.

Lemma 4.1 Let B denote any generating set for the ideal M̃. For each element b ∈ B, let b1

denote the y-linear term. Then the image of the set

{b1, b ∈ B}

under the map M̃ �M
∼→ S generates S as an R-module.

Proof The image of the generator b in M equals the image of b1. We can now apply Theo-
rem 3.2.

Lemma 5.1
HM(t) = HM̃(t)−H〈y1,...,ys〉2(t).

Proof Dimension is additive on exact sequences.

Lemma 5.2 Let ≤ be a monomial order on R[y1, . . . , ys] such that, for any f ∈ R[y1, . . . , ys]d,
deg(f) = deg(lt(f)), and let L′ denote the leading-term ideal of an ideal L with respect to ≤,
then

dimR Ld = dimR L′d.

22

Proof We proceed by induction. The base case d = 0 is evident since either both L0 and L′0
are {0} or both are R.

Now consider the isomorphisms obtained from the 2nd isomorphism theorem, and the equality
Ld +Rd−1 = L′d +Rd−1:

Ld/Ld−1
∼= (Ld +Rd−1)/Rd−1

= (L′d−1 +Rd−1)/Rd−1
∼= L′d/L′d−1.

23

References

[1] Alfeld P (1984) A trivariate Clough–Tocher scheme for tetrahedral data. Comput Aided
Geom Design (1):169–181

[2] Alfeld P (2001) MDS applet and 3D MDS applet. URL http://www.math.utah.edu/~pa/

[3] Barwick B, Stone B (2012) QuillenSuslin.m2. Available at
http://faculty.uscupstate.edu/bbarwick/math.html

[4] Billera LJ, Rose LL (1991) A dimension series for multivariate splines. Discrete Com-
put Geom 6(2):107–128, DOI 10.1007/BF02574678, URL http://dx.doi.org/10.1007/
BF02574678

[5] Billera LJ, Rose LL (1992) Modules of piecewise polynomials and their freeness.
Math Z 209(4):485–497, DOI 10.1007/BF02570848, URL http://dx.doi.org/10.1007/
BF02570848

[6] Clarke P (2013) examples.sage. Available at http://www.math.drexel.edu/∼pclarke

[7] Clarke P (2013) spline_routines.sage. Available at http://www.math.drexel.edu/∼pclarke

[8] Dalbec JP, Schenck H (2001) On a conjecture of Rose. J Pure Appl Algebra
165(2):151–154, DOI 10.1016/S0022-4049(00)00175-4, URL http://dx.doi.org/10.
1016/S0022-4049(00)00175-4

[9] Fabiańska A (2001) QuillenSuslin, version 1. Available at http://wwwb.math.rwth-
aachen.de/QuillenSuslin/

[10] Foucart S (2013) SplineDim. URL http://www.math.drexel.edu/~foucart/software.
htm

[11] Foucart S, Sorokina T (2013) Generating dimension formulas for multivariate splines. Al-
banian J Math 7(1):24–35, URL http://x.kerkoje.com/index.php/ajm/article/view/
527/484

[12] Grayson DR, Stillman ME (2012) Macaulay2, a software system for research in algebraic
geometry, version 1.5. Available at http://www.math.uiuc.edu/Macaulay2/

[13] Ibrahim AK (1989) Dimension of superspline spaces defined over rectilinear partitions.
Approximation Theory VI pp 337–340

24

http://www.math.utah.edu/~pa/
http://faculty.uscupstate.edu/bbarwick/math.html
http://dx.doi.org/10.1007/BF02574678
http://dx.doi.org/10.1007/BF02574678
http://dx.doi.org/10.1007/BF02570848
http://dx.doi.org/10.1007/BF02570848
http://www.math.drexel.edu/~pclarke
http://www.math.drexel.edu/~pclarke
http://dx.doi.org/10.1016/S0022-4049(00)00175-4
http://dx.doi.org/10.1016/S0022-4049(00)00175-4
http://wwwb.math.rwth-aachen.de/QuillenSuslin/
http://wwwb.math.rwth-aachen.de/QuillenSuslin/
http://www.math.drexel.edu/~foucart/software.htm
http://www.math.drexel.edu/~foucart/software.htm
http://x.kerkoje.com/index.php/ajm/article/view/527/484
http://x.kerkoje.com/index.php/ajm/article/view/527/484
http://www.math.uiuc.edu/Macaulay2/

[14] Lai MJ, Schumaker LL (2007) Spline functions on triangulations, vol 110. Cambridge
University Press

[15] Logar A, Sturmfels B (1992) Algorithms for the Quillen-Suslin theorem. J Algebra
145(1):231–239, DOI 10.1016/0021-8693(92)90189-S, URL http://dx.doi.org/10.1016/
0021-8693(92)90189-S

[16] MacAulay FS (1916) Some Properties of Enumeration in the Theory of Modular Systems.
Proc London Math Soc S2-26

[17] Margolin R (2005) Square Wave: Math and the Night Sea

[18] Quillen D (1976) Projective modules over polynomial rings. Invent Math 36:167–171

[19] Rose LL (2001) Unknown source

[20] Schumaker LL, Wang L (2011) Spline spaces on TR-meshes with hanging vertices. Nu-
merische Mathematik 118(3):531–548, DOI 10.1007/s00211-010-0353-0, URL http://dx.
doi.org/10.1007/s00211-010-0353-0

[21] Stein W, et al (2013) Sage Mathematics Software, version 5.8. The Sage Development
Team

[22] Suslin AA (1976) Projective modules over polynomial rings are free. Dokl Akad Nauk SSSR
229(5):1063–1066

25

http://dx.doi.org/10.1016/0021-8693(92)90189-S
http://dx.doi.org/10.1016/0021-8693(92)90189-S
http://dx.doi.org/10.1007/s00211-010-0353-0
http://dx.doi.org/10.1007/s00211-010-0353-0

	Introduction
	Basic Objects
	Conversion to Commutative Algebra
	Generating Splines
	The Hilbert Series
	The Question of Freeness
	Implementation
	spline_routines.sage
	SplineDim

	Proofs

