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Abstract

We present some characterizations of the ordered weighted ¢; norm (aka sorted ¢; norm) and
of the vector Ky-Fan norm as solutions to linear programs involving reasonably many variables
and constraints. Such linear characterizations can be exploited to recast and effortlessly solve a
variety of convex optimization problems involving these norms. Similar linear characterizations
are given for the dual norms of the ordered weighted ¢; norm and the Ky-Fan norm.

Key words and phrases: sorted £1 norm, ordered weighted ¢; norm, Ky-Fan norm, dual norms,
structure-promoting minimization, duality in linear programming.

This note is concerned with the sorted ¢; norm occurring in [4], and which is also called OWL norm
in [6], as a shorthand for ordered weighted ¢; norm. Given weights w; > wg > -+ > w, > 0 with
at least wy > 0, this norm is defined, for any x € R", by

n
(1) lzllows :=>  wjz},
j=1
where z7 > x5 > --- > x} > 0 is the nondecreasing rearrangement of |zi|,|x2|,...,|rn|. The

fact that it is a norm is probably most easily seen from the following restatement of a classical

rearrangement inequality:

n
(2) [zllowr = (I}é%fzwﬂ%(j)!,
j=1

where S,, denotes the set of all permutations of {1,...,n} (i.e., the symmetric group of degree n).
Thus, it is apparent that SLOPE, introduced in [4] and further studied e.g. in [2] [7], which consists

in solving
3) inimi *1|| — Az[l3 + [|2llow
minimize z z
RRze oIy Az||3 + [|z]lowr,

is a convex optimization problem. Its solution is usually computed by proximal gradient descent.
This note aims to showcase an alternative way of solving —in fact, a way of solving many
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convex optimization problems involving the OWL norm, and of doing so without any algorithmic
adjustment so that all-purpose solvers can be relied on. For instance, as illustrated in the MATLAB
file accompanying this note, the problem

(4) miniIngnize |zl owr, subject to Az =y
z€R™

can be simply solved after recasting it as a linear program, namely as

n
(5) min})mléze (a; +b;j) subject to Az =y, —(ar + be) < wirzy < ag + by for all k, £.
z,a,beR™ £
7j=1
This observation is based on a linear characterization of the OWL norm that strangely seems to
have gone unnoticed so far.

Theorem 1. For any xz € R",

©6)  |zllowr = (max {ij Slzl)j: >0, ) Spe=1foralll, > Sy, =1 forall k}
k 4

® ‘afﬁéﬁn{ZaﬁZb —(ay, +be) < wyze < ag + by for all k e}

Proof. The expression @ results from and from Birkhoff’s theorem [Il, page 37] stating that
the extreme points of the set of doubly stochastic matrices are the permutation matrices. The
expression follows from (6)) by invoking duality in linear programming (see e.g. [3, page 225]
read from the bottom up). O

Note that the expression (2) would also have provided a linear characterization of the OWL norm by
introducing slack variables ¢(?) € R", o € S, such that |To()] < cga) for all j € {1,...,n}, but the
resulting number of variables would have been too large for practical purposes. Here, the order n?
for the number of variables/constraints in the linear characterizations @- is manageable. This
number can even be reduced in some situations of interest. These include the (vector versions) of the
Ky-Fan norms, corresponding to the choice of weights w; =--- =wp =1and w41 =--- =w, =0
for some k € {1,...,n}. Precisely, the norm defined, for any « € R", by

8
® Il = Zx 13@;«%2 3

admits the following linear characterizations involving a number of variables/constraints of order n.
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Theorem 2. For any = € R",

n n
) xllw = max, { Zvjxj : Zuj <k, —u; <v; <wuj, u; <1 forall j}
b j:l .:
n
(10) = a’bagl[é?rbl’ﬁeR { ;aj +kB:a+b=2z, —a; <a; <aj, —f < b; < for all j}.

Proof. Observe first that the expression can be written as

(1) sy = mae { > oy Il < Lol = > 0y <k}
j=1
As a consequence of [8, Lemma 5.2 p 465], see also [5, Lemma 1.1], we have

(12) conv{v € R" : [[o]loc < 1, [0llo < k} = {v € B : Julloo < L, Ilols < &},

from where we derive that
(13) el = max{zvm oo < 1. [l < k}

The expression @ follows by introducing a vector v € R™ of slack variables such that |v;| < u;
for all j € {1,...,n}. As for the expression , by adapting a well-known characterization of the
Ky-Fan norm (see [I, Proposition IV.2.3]) from matrices to vectors, we observe that

14 = mi k)bl oo : b=uxa}.
(14) Izl = min {llaly + Kl[blloc : @ + b =2}

We then conclude by introducing slack variables & € R™ and € R such that |a;| < a; and |b;| <
for all j € {1,...,n}. O

As consequences of the linear characterizations for the OWL and Ky-Fan norms, we can now deduce
linear characterizations for their dual norms, starting with the dual OWL norm.

Theorem 3. For any xz € R",

(15)  |lzllowrL = | max { Zx]zj : Z; aj +b;) <1, —(ag +br) < wize < ay + by for all k,ﬁ}
J

16 — i UV S0, (U—Vyw=x S Uis+ Vi) = ¢ for all i
(16) ceR,(?lvneanxn{c >0, ( Jw ==z Z( 0+ Vig) =cforalli

Z(Uk,j + Vi ;) = ¢ for all j}.
k
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Proof. In view of the definition of the dual OWL norm, i.e., of
(17) lzlowr, = max {(z,2) : |lzfowr <1},

the characterization immediately follows from @ As for the characterization , it is
deduced from by invoking duality in linear programming (see e.g. [3, page 224] read from the
bottom up). O

It has to be noted that a linear characterization—but one involving too many variables— could
be derived from the expression of the dual OWL norm obtained in [9, Theorem 1]. In the case
of the dual Ky-Fan norm (i.e., taking w; = -+ = wy = 1 and w41 = -+ = w, = 0 for some
ke {1,...,n}), the expression of [9] reduces to

. x
(18) e

This identity can easily be explained from and from the well-known fact that, for two arbitrary
norms /- /1y and /- [ 2y, the norm defined by Jz/ = max{/x/ ), v/ (2)} admits the dual
norm given by /z/* = inf{/a //?1) +/ b//&) : a+ b= z}. From here, we conclude this note
by presenting some linear characterizations of the dual Ky-Fan norm that involve a number of
variables/constraints only of order n, rather than the order nk resulting from an application of
Theoremwith w=[1;...;1;0;...;0].

Theorem 4. For z € R",

n n
19 o) = iZj: i+ k<1 b=
00 lolfy =, 15 | Do L +h9 <1, kb,

—a; <aj < aj, —,ngjgﬁforallj}

n
(20) = c,aerﬁ,iélGR” {c: a <., ;Bj <ke, —a<z; <a, —f; <x; <G for all j}.

Proof. The characterization follows from the definition ||93H2‘k,) = max,ern{ (7, 2) : ||z]lk) < 1}
of the dual Ky-Fan norm and from . As for the characterization , it is deduced from
the abridged expression by writing ||:L'Hz‘k) = min{c : ||z|lec < cand ||z|i/k < ¢} and by
introducing slack variables & € R and § € R" such that a < ¢, |z;| < a for all j € {1,...,n},
(32, 8i)/k < ¢, and |z;| < B; for all j € {1,...,n}. O
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Figure 1: The unit OWL ball and the dual unit OWL ball for the weight w = [3;2; 1].
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