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Abstract

A linear functional of an object from a convex symmetric set can be optimally estimated, in a
worst-case sense, by a linear functional of observations made on the object. This well-known fact
is extended here to a nonlinear setting: other simple functionals of the object can be optimally
estimated by functionals of the observations that share a similar simple structure. This is
established for the maximum of several linear functionals and even for the ¢th largest among
them. Proving the latter requires an unusual refinement of the analytical Hahn—Banach theorem.
The existence results are accompanied by practical recipes relying on convex optimization to
construct the desired functionals, thereby justifying the term of estimation algorithms.
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1 Introduction

Suppose that an unknown object f, living in a vector space F, is acquired via a vector A(f) € R™
of linear observations A1 (f),..., \n(f) € R, in addition to the prior knowledge that it belongs to a
prescribed model set K. Estimating a quantity I'(f), living in some normed space X, boils down to
devising a recovery map A : R™ — X. From a worst-case perspective, its performance is measured
through

e(A) = sup [T(f) — AA)I]
fex

For a fixed A, constructing a map A that minimizes the above is the essence of Optimal Recovery [§],
a lead-in to the field of Information-Based Complexity [II], where one can also minimize over A.
For any A : R™ — X, the validity of the lower bound

() =T(F"
e(A) > e, where e, := sup IT(f) Gl
ffek 2
A(f)=Af")

Y
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is well known and easy to derive, and so is the complementary inequality e(T" o A®") < 2¢,, where
AcPs : R™ — Fis any data- and model-consistent map, i.e., one that satisfies A(A“™(y)) = y and
AP (y) € K for all y € A(K). In short, the map I" o A®" is nearly optimal (with a factor 2). To
surpass this, one seeks maps A% : R™ — X yielding e(A°P%) < e,, which are therefore genuinely
optimal (with a factor 1). This is achievable when I' = v is a linear functional—throughout,
lowercase Greek letters are used for functionals. This classical result is due to Smolyak (see e.g. [9,
Theorem 4.7]) when the set K is convex and symmetric about the origin and was refined by Sukharev
[10] when K is merely convex. These two results also guarantee the existence of a genuinely optimal
estimation map A°Y : R™ — R which is linear in the former case and affine in the latter.

The goal of this article is, firstly, to exhibit examples of nonlinear yet ‘simple’ functionals v : F' — R
for which ‘simple’ genuinely optimal estimation maps §°P% : R™ — R exist and, secondly, to
complement existence results with practical constructions whenever possible. As a prototypical
example of nonlinear functionals, the maximum of a function f was considered early on with near
optimality in mind, see e.g. [12]. With genuine optimality in mind, it has been treated more recently
relatively to a model set K consisting of Holder functions within the space F' of continuous functions,
see [5]. The arguments were specific to the case at hand, so the situation where the function space
F' is a reproducing kernel Hilbert space, say, was not covered. The results obtained in the present
article do apply to such a situation: for instance, Theorem [I| will guarantee the existence of a
genuinely optimal estimation functional §°P% : R™ — R which is convex and Proposition 5| will
later provide a practical recipe to construct it, under the proviso that the maximum is over a
finite set in order for a convex optimization program to be solvable. As an extension, Theorem
will establish e.g. that the functional outputting the ¢th largest value among a number of linear
functionals comes with a genuinely optimal estimation functional §°P% : R™ — R which is the
supremum of infima of affine functionals. This result is based an a (possibly novel) refinement of
the Hahn—Banach dominated extension theorem, see Lemma [2]

Here is a brief outline of the organization of the article: theoretical results such as Theorem [1| and
Theorem [3| are proved right below (Section , before computational considerations are addressed
(Section , first at an abstract level and then specialized to two particular examples.

2 Optimal Estimation of Some Nonlinear Fuctionals

This section starts by uncovering the ‘simple’ form of an optimal functional for the estimation of
a nonlinear functional v which appears as the supremum of linear functionals. It continues by
enlarging the result to include v’s that are a mixed supremum-infimum of linear functionals. In the
process, a seemingly novel refinement of Hahn—-Banach dominated extension theorem is established.
The section ends with a discussion on the handling of possible errors in the observation procedure.
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2.1 The supremum of linear functionals

In the result presented below, valid in an arbitrary normed space F', the nonlinear functional ~ to
be optimally estimated is the supremum of linear functionals indexed by a set I. Since the latter
need not be finite, it transpires that any norm /f/ = max{n(f) : n € F* with J/ n//. = 1} can
be optimally estimated by way of a functional §°P% : R™ — R which, as the supremum of affine
functionals, is a convex functional. Of course, an analog result could be obtained if v was the
infimum of linear functionals by simply applying Theorem [I| to —~.

Theorem 1. Suppose that the model set K is convex and contains the origin and that the functional
~v: F — R is sup-linear, i.e., of the form

() =suwpv(f), fEF
el

where the 7; € F* are linear functionals. Then there exists an optimal estimation functional
§°PH - R™ s R which is also sup-affine, i.e., of the form

§°P(y) = sup (Cgi) + C;(f)@/k>, y € R™.
iel —

Proof. As a first step, the previously mentioned lower bound is rewritten as

n o 1 (P _ AN F
e, = sup V() =) _ sup 7 () =7
7L ek 2 FeRrker(A) 2
A(f)=A(f")

where one has introduced the set K := K x K C F := F x F, as well as the linear map A : F — R™
and the (nonlinear) functionals 4/,5" : F' — R defined via

A5 ) = A =AU, AU D =2 AU D) =)

With pg denoting the Minkowski functional of K—which is a sublinear (i.e., positively homogeneous
and convex) functional by virtue of the fact that K is convex and contains the origin—one has
Y (f) —7"(f) < 2e,pic(f) whenever f € ker(A). Also introducing linear functionals 7/,7 : F — R

defined for all i € I via Yi([f"; f"]) = v (f") and 5] ([f"; f"]) = 7:(f"), so that ¥'(f) = sup;er % (f),

the previous inequality ensures that, for all 4, € I, one has 7; (f) < 2e,pg(f) +7"(f) whenever
f € ker(A). Fixing i, and noticing that 2e,pg + 7" is a sublinear functional, the Hahn-Banach
dominated extension theorem (see e.g. [2l Theorem 4, p. 49]) applies to guarantee the existence
of a linear functional y;, € F* such that Hiv | xer(R) = i, |ker(A) and wi, (f) < 2e,pp(f) +7"(f) for

all f € F. In view of the equivalence between the fact that Vi, — M

existence of ¢(*) € R™ such that Vi, — Mi, = oy C](j*)j\k, one derives that

vanishes on ker(A) and the

*

3 () = D" A(F) < 200 (F) +7(f)  forall fe F.
k=1

3
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In other words, for any i, € I, it holds that

Yir () = D el () = M) < 26, max{pic(£), pc(f")} +4(f")  forall f/,f" € F,
k=1

which immediately yields the key observation that

(1) <%* Z () )\ ) < Zc ) < 2e, for all f/, f" € K.

k=1
At this point, for each i, € I, one defines

(ix) . “ (i)
2 = inf An( .
(2) <o }2;<;< = () + %)

k=1

This definition readily implies that, for each i, € I, one has y(f) — < ) Yo (1* (f)) > —e,
for all f € K. One can now take the supremum over i, € I to arrive at

(3) v(f) — sup <Co + ch Me(f )> —e for all f € K.
el 1

Next, for each i, € I, one selects f” € K such that v(f") — > 11, c,(f*)Ak(f") + e, is equal (or is

arbitrarily close) to c(l*). Writing for this f” and for f’ being an arbitrary f € K leads to

%m<%+@o+zk1 <ﬁ)mew%ms%+w%4#+zL#WH»
Taking the supremum over i, € I yields

(4) v(f) — sup (Co + Zc ) <e, for all f € K.

iel
Now defining the estimation functional §°P% : R™ — R by §°Pti(y) = sup;¢; (CO + > ck)yk)
combining inequalities and show that

e(8°PM) = sup [y (f) = 6PH(A(S))] < es.

This proves the genuine optimality of the sup-affine functional §°P4. O

2.2 The mixed supremum-infimum of linear functionals

It is now acquired that there is a ‘simple’ optimal algorithm for the estimation of the (pointwise)
largest value of linear functionals 71, ..., 74, say. Is there also a ‘simple’ optimal algorithm for the
estimation of the (pointwise) ¢th largest value of these linear functionals? The answer is yes, as
established in Theorem [3| below. ‘Simple’ in this case means the mixed sup-inf of affine functionals.
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This mirrors the sup-inf/inf-sup nature of the functional ’yj associating to f € F' the fth largest
value of v1(f),...,va(f), namely

il . .
= sup inf ; = inf  sup~;(f).

7 (f) m:pNEI%(f) |lecHHng%(f)

The essential feature is to have both a sup-inf and an inf-sup representation of the nonlinear

functional at hand, as e.g. in Courant—Fischer characterization of the ¢th largest eigenvalue. Thus,

the result will also apply to the difference of suprema of linear functionals, since

sup p1;(f) — supv;(f) = sup inf (p; — v;)(f) = inf sup (i — v;)(f).

icl jeJ icl J€J JeJ jer
A crucial part of the argument will be a refinement of Hahn—Banach dominated extension theorem.
It goes in a different direction than other refinements that the author encountered before, such as
[2, Theorem 11, p. 53]. Essentially, it says that the infimum of linear functionals dominated by a
sublinear functional on a subspace can be extended while maintaining the domination in a favorable
way (more favorable, of course, than extending each linear functional individually). While a fully

general statement would require Zorn lemma, it is enough here to establish a restricted version,
which is exactly what is needed later.

Lemma 2. Let V be a vector space and let U be a finite codimensional subspace of V' given as
U = ker(n1) N---Nker(n,,) for some linear functionals 7y, ..., n, € V*. If u; € V* i € I, are linear
functionals on V and if p is a sublinear functional on V such that

in§ wi(u) < p(u) for all u € U,
1€

then there exist scalars cq, ..., ¢, € R such that

115 wi(v) + ; cne(v) < p(v) for all v € V.

Proof. By immediate induction, it suffices to establish the result when m = 1, i.e., when U = ker(n)
for a single linear functional n € V*. The proof follows very classical arguments, with the additional
usage of inf;z; + inf;y; < inf;(z; + y;). Let w € V be such that n(w) = 1. Since, for any
o' u” € ker(n),
inf (p0;(u') + pi(w)) + inf (p(u”) — pi(w)) < inf (i (u') + pi(u”)) = inf g (u’ + ")
el el il el
< pl ") < plal -+ w) + p(u” — w),

we can find a scalar ¢ € R such that, for any v/, u” € ker(n),

inf(pi(u") = pi(w)) = p(u” —w) < ¢ < p(u’ + w) = nf (s (W) + pi(w)).

Then, for any v € V' \ ker(n) written as v = u + tw with u € ker(n) and ¢ # 0,
5)
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e if t >0, then v = t(v 4+ w) with u’ € ker(n), and
inf pi(v) + en(v) = (i) + () + ¢) < ol +w) = plv);
e if t <0, then v = —t(u” — w) with u” € ker(n), and

inf i (v) + en(v) = —t(inf(i(u") = pu(w)) = ) < —t(p(u” = w)) = p(v).
These two cases show that inf;cr p;(v) + ¢n(v) < p(v) holds for all v € V, as required. O

With this technical lemma at hand, the main result of the subsection can now be stated and proved.

Theorem 3. Suppose that the model set K is convex and contains the origin and that the functional
v : F — R can be expressed as

v(f) = sup inf v(f) = inf sup v;(f), fEF,
acAi€la beB je.,

where the 7; € F* are linear functionals. Then there exists an optimal estimation functional
§°PH . R™ — R which has the form

50pti(y) = sup inf < a.5) + Z c,(:’b)yk>, y € R™.
k=1

acA beB

Proof. One starts from the lower bound e, expressed once again as

no_ " =~/ O mI(F
0= sup WO, Y=Y
1€k 2 FeRnker(R) 2

A=A

where it is recalled that the ‘bar’-notation involves K := I x K C F := F x F, which has Minkowski
functional pi, and A : F — R™, 45" 4,4/ : F — R, which are defined via

A(Lf'5 £ = A(F) = A, T A5 ) =, VL5 ) = (),
(5 D) = %), Vi (L5 17D = ().
In this way, one has 7'(f) < 2e,p(f) +7"(f) whenever f € ker(A). Therefore, for all a, € A and
all b, € B,

inf 7;(f) < 2e,pr(f) + sup 77(f)  whenever f € ker(A).
1€l =

This is the time to invoke Lemma [2| justifying the existence of ¢(@t*) ¢ R™ such that

3

f a*b*)\ <2 — _ f 1] _EF
z‘glla* Z K e (f) + jsel‘lllb)* 35 (f) or all f
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It follows that, for any a, € A and b, € B, one has

6) (Linf (=2 e ) = sup )=S0 Al ) < 2y forall 47 € K.

ZEI(Z* k=1 jejb* k=1

At this point, for each ax € A and b, € B, one defines

(aw,bx) . a*7b*
c := inf | sup c )+e
0 fex <jer* s Z b)

For each a, € A and b, € B, one immediately obtains that, for all f € K,

m m

7€ b, k=1 k=1

Now, taking the infimum over b, € B on the left-hand side yields
v(f) > —e, + inf closb) 4 Z c(a*’b))\k(f) forall fe K
B beB \ P k ’

and finally taking the supremum over a, € A on the right-hand side and rearranging gives

acA beB

(6) (f) — sup inf ( 3 AP > > ¢, forall f €K,
k=1

Next, for each a, € A and b, € B, one selects f” € K achieving (or coming arbitrarily close to) the
infimum defining c(()a*’b*)7 SO writing for this f” and for f’ being an arbitrary f € K leads to

a*7b* “ a*,b*
inf v (f) — ( Z ) < &,

1€1q, P

from where it follows, by taking the infimum over b, € B, that

inf v (f) <e, + mf ( (ax,0) + Zc,(ca*’b)/\k(f)> < e, + sup inf < (a,b) + chl’b))\k(f))
k=1 k=1

1€lq, acAbEB

Finally, taking the supremum over a, € A leads to

(7) v(f) — sup inf (c(()a’b) + Z cl(ﬁa’b))\k(f)> <e for all f € K.
k=1

eAbeB

Defining the estimation functional §°P" : R™ — R by §°P"(y) = sup,¢ 4 infyep (¢ (a.0) +> c,(ga’b)yk)
and combining inequalities @ and show that

e(6°P) = sup [v(f) = PHA(H)] < e
S

This proves the optimality of the sup-inf-affine functional §°P4. ]
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2.3 Handling observation error

In realistic situations, the observations made on the unknown object f are not exact. They typically
take the form A\i(f) + ey for some unknown e € R™. This vector can be modeled stochastically,
as done in [3] but not considered here, or deterministically via an assumption e € &, as considered
here, where £ is convex set containing the origin. It is folklore to remark that this ‘inaccurate
scenario’ reduces to the ‘accurate scenario’ by focusing on the compound object (f,e) belonging
to the model set K x & and acquired via the linear observations A,((f,€)) = Ae(f) + ex. For
instance, since a sup-linear functional v acting on f is also a sup-linear functional acting on (f,e),
Theorem [1| will still guarantee that there exists an optimal functional for the estimation of v which
is sup-affine. The divergence with the ‘accurate scenario’ will essentially occur in the construction
of this optimal sup-affine functional. Precisely, as will become apparent in the next section, the
support function of the model set will play a central role. For the set IC, it is defined on linear
functionals n € F'* by

Il = supn(f)-
fex

In the ‘inaccurate scenario’, this will have to be replaced by the support function of K x £ at an
associated linear functional 77 defined on F' x R™. As an example, if ¢ € R™ is a coefficient vector
and £ = B} is a ball in £,-space for some p € [1, 00] with conjugate exponent p" € [1, 00}, one easily
observes that

[0 ol gy = e S esut) +ea) =[S o]+ el

This observation can be used in Propositions [5 and [6] to deal with the ‘inaccurate scenario’ for the
construction of the optimal algorithms presented next.

3 Computational Realizations

The purpose of this section is to provide computational recipes for the practical construction of the
optimal estimation functional appearing in Theorem [I] and, to a lesser extent, Theorem [3] At first,
a rather abstract optimization program outputting the desired coefficient vectors will be presented.
Then, for the sake of implementation in a reproducible MATLAB ﬁl(ﬂ two situations of specific
interest will be spelled out in separate subsections.

! Accessible from the author’s webpage or at https://github.com/foucart/COR.
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3.1 Generic convex optimization programs

In most of this subsection and throughout the next two, the nonlinear functional v : FF — R
denotes a sup-linear functional, i.e., it has the form ~(f) = sup;c;vi(f) with the 7;’s being linear
functionals. It was established in Theorenl] that the functionals § : R™ — R minimizing the
estimation error e(d) = sup{|y(f) — d(A(f))| : f € K} can be sought among sup-affine functionals.
As a preliminary, for a fixed such §, one highlights how e(d) can be computed by solving a convex
optimization program. The crucial point is that v :=d o A : F' — R is itself a sup-affine functional
in this case. The statement below features the standard simplex associated with the index set I,
defined when I is finite by

SI::{UERI:aizoforalliEIand Z%Zl}.
i€l

Proposition 4. Let K be a convex set. For a sup-linear functional «v : F — R and a sup-affine
functional v : F — R given, for f € F, by

v(f)=supy(f) and  w(f) =sup (vi(f) +bi),

iel i€l
where the v;,v; € F* are linear functionals and the b; € R are scalars, one has

H\%-* =D ier Uz(%*)yi“‘n <e+der Uz‘(i*)bia €1,
m’/i* - Zie[ Tz'(“)%w;c <e—bi, ix € 1.

(8) sup|[y(f) —wv(f)f= inf e sto {

fek i) i 51
Proof. The supremum appearing on the left-hand side of is nothing else than the infimum value
of e subject to |y(f) —v(f)| < e for all f € K. The latter decouples as the two constraints
9) v(f)—v(f) <e forall fek and v(f)—~(f) <e forall f eKk.

In view of v(f) = sup;c;7i(f) and of

—v(f) = —sup (v5(f) + bi) = inf (—vi(f) —bi) = inf Y oi(—vi(f) = bi),

iel 1€
the first constraint in @ is equivalent to a set of constraints indexed by i, € I, namely

Vi, (f)+ inf > oi(—w(f)—b) <e forall feK.

Each of these individual constraints reads

sup inf (7, (f) + > oi( = wi(f) b)) <e.

I
fekoes iel
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Since the inner expression depends affinely of f € I, which is a convex set, and also affinely
on o € S', which is a convex and compact set, von Neumann minimax theorem legitimizes the
exchange of sup and inf, so that the above constraint reads

inf sup <7i*(f) + Zai( —vi(f) — bz)> <e.

€St fex iel
All in all, the first constraint in @ is equivalent to the existence of o(*) € ST, i, € I, such that

sup (7i. (/) = Yool () <e+ Do,

fek iel il

which is tautologically equivalent to the first set of convex constraints indexed by 7, appearing in .
Likewise, with very similar details left to the reader, the second constraint in @ is equivalent to
the existence of 7(*) € 8!, 4, € I, obeying the second set of convex constraints indexed by i,
appearing in . Incorporating all the () and 7() as optimization variables, one arrives at the

announced convex optimization program. O

Turning to the minimization of the estimation error e(d) over all possible functionals § : R™ — R,
or in fact only over all functionals of the form d.(y) = sup;c; (c[()z) + > c,(;)yk), y € R™, one
notices that this error becomes

e(dc) = sup |v(f) — ve(f)], with  v.:=0d.0A: F — R being a sup-affine functional.
fex

At a fixed ¢ € (R x R™)!, Proposition 4] just indicated how to compute e(d.) by solving a convex
optimization program. Regrettably, a straightforward minimization over ¢ as well seems out of
(ix) (2)

k

reach, due to the presence of products aiZ c
set of constraints. An alternative route, pursued below, consists in translating the constructive

of optimization variables generated through the first

argument of Theorem [I|into a manageable optimization program.

Proposition 5. Given a convex set K containing the origin, an optimal functional §°P% : R™ — R
for the estimation of a sup-linear functional v(f) = sup;c;vi(f), f € F, is obtained as the sup-affine
functional §°P(y) = SUp; ¢ (/cf)z) +> ey Eg)yk), y € R™ where the ‘hat’-notation denotes solutions

to the convex optimization program

e;, +ef < 2e, ix €1,
(10)  minimize e sto [l - T A Nl < el el
Z(ZL)FG“E’? = ier Uz(z*)%‘ + 25 Cl(;*)Akm/c <e, wel

&’

Subsequently, the remaining coefficients € R are obtained as ’c‘éi*) =e—eg; foralli, el

10
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Proof. Keeping the proof of Theorem (1| in mind, recall that the key resided in being satisfied
for all i, € I, ie.,

(01~ S) (= 5 nm) 2o
k=1

flek feK

for some ¢(i*) € R™ and for e € R as small as possible, i.e., e = e,. Thus, introducing slack variables

/ "

€;.,¢;. € R bounding the above suprema, the task consists in minimizing e sub ject to e’ + e” < 2e,

to supprere (Vi (f) =2kt € (Z* Me(f")) < e, and to sup i (=7 (f")+ 325 1 )/\k(f”)) < ej, for
all i, € I. The first of these constraints are exactly the first constraints in , while the second
ones reduce to the second constraints in simply by the definition of the support function.
Considering now the third and last constraints, in view of

—y(f") = =swpy(f") = inf (=(f") = inf > oi(=u(f")),
el

i€l

one obtains

sup <—’)’(f”)+zci(f*))\k(fﬂ)> = sup inf ( > omilf”) +ZC )
k=1

freK f”GKUESI el
= inf su aivi(f” )+ c(z*
ot s (=St + >

el

where the exchange of sup and inf relied on von Neumann minimax theorem, in the same way as
for the proof of Proposition As a result, the constraints can be rephrased as the existence of

o) € 8T such that .
et S 2
S s 3o n], < .

i€l k=1

Incorporating all the o) e 8! as optimization variables, one arrives at the third constraints
in . All in all, it has been justified that the convex optimization program outputs e,
(i.e., the minimal error e(d) over all possible estimation functionals §) as € and the coefficient
vectors making the linear part of 6°P% as the ¢(i*) € R™. Finally, the announced expression for the

(i)

remaining coefficients ¢;*’ € R follows from their very definition , written as

m
/C\[()’L*) — _ Sup <_ // + ZES*)Ak ) _|_ €b7
ek

’e\//

and from the identification of the above supremum as €; and of e, as e. O

When estimating a mixed sup-inf-linear functional, it is as also possible to translate the proof
of Theorem [3] into a practical recipe for the construction of the optimal sup-inf-affine functional.
The key resides again in fulfilling the inequalities , which are treated as above. More precisely,

11
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one proceeds in exactly the same way (save for the notation) to recast the bound on the second
summand in the left-hand side of of by a slack variable eg*’b*, and the argument will also apply
when recasting a bound on the fist summand by a slack variable e;* p,- With details left out, one
arrives at the convex optimization program displayed below.

Proposition 6. Under the setting of Theorem 3| the optimal estimation functional §°P% : R™ — R
has the sup-inf-affine form §°PY(y) = sup,c 4 infpep (Eéa’b) + >, Eéa’b)yk), y € R™, where the
‘hat’-notation denotes solutions to the convex optimization program

!/ "
€, b, T Capp, < 26 a, € A, b, € B,
ini 1 (a*vb*) m (a*7b*) /
mmize e 880 1 ier,, o2 v = il e Nl < €y, ax € A b€ B,
e e ,e
ax. (ax,bs) m(ax,by) "
clen P eR™ - en. T T e Mell e <€l 4., ax€Ab€B.

O’<a* ,bx) GSIQ*
T(a*’b*>681b*

A(

a,b)
€

"(a*vb*)

Subsequently, the coefficients € R are obtained as ¢, =e— ’e\’a’hb* for all a, € A, by € B.

Arguably, Propositions [ and [6] are still abstract statements. Whether they really translate into
practical constructions depends on the specific model set K and its amenability to numerical com-
putations. Concerning Proposition [6] there is the added issue of the number of constraints, which
is |A| x |B|. In the example of the ¢th largest value among d linear functionals, one has

[Al={le€l:d]:|I|=1¢} = (?) and |Bl={Je[l:d:|J|=d+1-1} = <gi11)’

so |A| x |B| behaves exponentially in d unless ¢ or d — £ is a small constant. For this reason, one
concentrates only on the estimation of the maximum of linear functionals when expounding on the
two relevant examples presented in the next subsections.

3.2 Polytopal models in /. -spaces

Working in F' = ¢4 the convex model set containing the origin (but not necessarily symmetric)
considered here is the polytope

PO .= {fet (apf)<lforallleL}

for prescribed ay € E{V . Using duality in linear programming, it is routine to verify that the support
function of CP°Y, evaluated at a linear functional i defined for f € ¢ by n(f) = (g, f), can be
expressed as

Inllcpery = sup (g, f) s.to {(ae, f) <1forallle L

fERN
= inf sy s.to s >0 and Spap = @.
Y si0s> 0t Yo =g
lel Lel

12
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Therefore, an inequality constraint ||[|,cpey < & found as a constraint in an optimization program
can be rephrased as the existence of some s € Ri such that ZéeL sy < Kk and ZzeL Seap = g,
and subsequently s can be incorporated in the optimization variables. For instance, with u; € Ejlv
representing the linear functional A\; and w; € E{V representing the linear functional ~;, so that

Me(f) = (ug, f) and  ~(f) = (ws, f) for all f € Kévo

the convex optimization program from Proposition [5| becomes:

Linear program for the optimal estimation of 7y = sup;c;y; with model KCP°Y.

e, tef <2 Y ersy syt < €y el téz*) <el, i€l

minimize e  s.to s( )ag = w;, m iy, iv el

ecR,e e/ €R! ZEEL f g Zk 1%k ) i) . )
C((’?*))GR"] dorer tz Jag = - U Jw; + Dkt O Uk ix e I
o\ eS8

2 2 L
s( *),t( *)€R+

After solving this linear program, one can construct an optimal estimation functional 6°P" which
has the generic sup-affine form

(11) .:(y) = sup (bi + (z1,9)), yeR™
1€

For good measure, one can verify that the minimal value of e found above agrees with e(6°P") when
the latter is computed by solving the convex program from Proposition @] In the present case, it
becomes:

Linear program to compute e(0y, ) for a fixed sup-affine functional with model Kcpoly

Seer st et Tier ol b Sie ti <e—bi, i€l
(12) minimize e s.to <> s sél*)ag = Wi, — D et a.(l*)A*z,-, ix €1,

60 i) (ix) ()

Tk x) ST Tx * . .

ZU*)’tT(i*)eeRL Doverty Tag =Nz, =Y T wg, i€ 1.
) +

Remark. In F = /Y and with a convex model, it is somewhat known that there exists an affine
map A% : R™ — ¢N which is genuinely optimal for the estimation of T' = Idp, i.e., for the full
approximation problem. This is essentially Sukharev’s result applied componentwise. Leaving out
the details, this optimal map has the form

APy e R™ s {E(O) + Zykﬁ(k)] ey,
=1

13
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where the vectors ¢, 21 ... 2™ ¢ ¢N are solutions to the following linear program (involving
the standard basis (v1,...,vy) for RV):

‘ 0 j 0 .
> eer Sy) < e+c§' ) ZéeLtgj) < e—c§~ ) je[l:N],

minierﬂrglize e s.to D ser séj)ag =0 — > cgk)uk, jE€[l:N],
e

() (k) RN @, _ . m (k) . .

s 1) erk 2uperti @ Ui+ 2 ok=1 G5 ks jefl:N].

As an initially guess, a natural candidate for the estimation of v = sup;c;7; could have been the
‘plug-in’ functional 6P"& = v o A°PH : R™ — R. Since it has the generic sup-affine form with
bi = (@9 and (z)r = 7(c™®), the estimation error e(P"8) of this ‘plug-in’ functional can be
computed by solving the linear program . Numerical experiments available in the reproducible
file confirm that this guess is not optimal, i.e., that e(5P'"8) is larger than e(5°PH).

3.3 Approximability models in Hilbert spaces

Working now in a Hilbert space F' = H, the convex model set containing the origin (but not
necessarily symmetric) considered here is the set of elements that are approximated with prescribed
accuracy € > 0 by an affine subspace g+ V', where V' is an n-dimensional linear subspace of H and
g € H\V is a fixed element satisfying dist(g, V') < . More precisely, one considers

KPP = (f € H:dist(f,9+ V) <<} = {f € H: |[Pya(f —g) <},

where Pj,1 denotes the orthogonal projector onto the orthogonal complement of V. Motivated by
Optimal Recovery questions, such approximability sets (with g = 0) were introduced in [I]. Based
on an observation made (with g = 0) in 6, Subsection 3.3], their support function evaluated at a
linear functional i can be expressed as

ellnll«  if g =0,

+00 otherwise.

Il icovor = n(g) + {

Consequently, still using the notation ug € H for the Riesz representer of the linear functional Ag
and w; € H for the Riesz representers of the linear functional v,—in a reproducing kernel Hilbert
space with kernel k, note that w; = k(‘,x(i)) if v; is the evaluation at a point z()—the convex
optimization program from Proposition [5| becomes:

14
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Second-order cone program for the optimal estimation of v = sup;c;~; with model KC*PPT.

minimize e
e€R,e e’ eRI
clix) cR™
aix)esT
/ 1 .
e; te;, < 26 i €1,
1 1 .
s.to Zk Lol UkGVL —2ier ™, z(*)erZk Vg e V4, i1,
anZ* Oy 1c ukH <ej —(wi, — > lck uk,g>, iv €1,

ix)

5H_Ziel‘7( wi + DL 1Ck ukH<e _<_Ziel‘7( wi + > e 1ck* Uk, g), iy € 1.

As in the previous subsection, one can construct an optimal estimation functional §°PY of the
generic sup-affine form after solving the above second-order cone program. And again, for
good measure, one can verify that the minimal value of e just found agrees with e(6°P*) when
the latter is computed by solving the convex program from Proposition @] In the present case, it

becomes:

Second-order cone program to compute e(dy, ;) for a fixed sup-affine functional with model K*PP*,

(13) minimize e

e€ER
o) r(i) e8!

Wi, — Y icr a(i*)A*zi eVt Az, — Yoier T Z(Z*)wZ e vt i €1,
s.60 Q ellwi, = Dot A ] < e+ Do b — (wi, = e 0N 5L g), i e,
el|A*z, — Zlel . wzH <e—by, —(Nzi, =Y icr T (s )wz,g> ix € 1.

Remark. In F = H and with the model set K?PP", there also exists an affine map A°Y : R™ — H
which is genuinely optimal for the estimation of I' = Id . Specifically, it was established in [I] that,

APy e R™ i |argmin | Py f|| s.to A(f) =y| € H
fed

is an optimalﬂ recovery map in the case ¢ = 0. It then easily follows that

APH € R™ i g+ ADP(y — A(g)) € H

Acheb

is an optimal recovery map with g # 0. It is also affine, since is a linear map which admits

the expression (not immediate from above, see [4, Section 10.2] for details)

AP =S apup + Y by, a=[L,—C(CTO)C Ty, b=[(CTO)C Ty

%In fact, it was even shown that A®°P(y) is the Chebyshev center for the set K*PP* N A~ ({y})—i.e., the center of
the smallest ball containing the set—for any y € A(KC*PPT), which is stronger than the notion of optimality examined
so far.

15
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where the wu; are assumed to be orhonormal, the v, form a basis for V, and C € R™*" is the
cross-gramian matrix with entries (uy,vg). Given the above, an initial candidate for the estimation
of v = sup;c; ¥; is the ‘plug-in’ functional oPlie — 4 o A%t : R™ — R. The latter has the generic
sup-affine form with b; = (w;, g — APAg) and z; = (A®P)*w;, so the estimation error
e(6P18) of this ‘plug-in’ functional can be computed by solving the second-order cone program .
Numerical experiments available in the reproducible file hold a surprise: on all the examples tested,
the ‘plug-in’ functional was optimal, i.e., e(§P'"8) was equal to e(§°P*). In Hilbert spaces, for model
sets of the form {f € H : ||Tf|| < 1} with T not necessarily equal to (1/¢)Py 1, it was known (see
[7, Lemma 6]) that ‘plug-in’ maps are indeed optimal for the estimation of linear maps, but the
indication that this phenomenon could remain true for the estimation of some nonlinear maps is
quite striking.
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