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Abstract

A linear functional of an object from a convex symmetric set can be optimally estimated, in a

worst-case sense, by a linear functional of observations made on the object. This well-known fact

is extended here to a nonlinear setting: other simple functionals of the object can be optimally

estimated by functionals of the observations that share a similar simple structure. This is

established for the maximum of several linear functionals and even for the ℓth largest among

them. Proving the latter requires an unusual refinement of the analytical Hahn–Banach theorem.

The existence results are accompanied by practical recipes relying on convex optimization to

construct the desired functionals, thereby justifying the term of estimation algorithms.
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1 Introduction

Suppose that an unknown object f , living in a vector space F , is acquired via a vector Λ(f) ∈ Rm

of linear observations λ1(f), . . . , λm(f) ∈ R, in addition to the prior knowledge that it belongs to a

prescribed model set K. Estimating a quantity Γ(f), living in some normed space X, boils down to

devising a recovery map ∆ : Rm → X. From a worst-case perspective, its performance is measured

through

e(∆) := sup
f∈K

∥Γ(f)−∆(Λ(f))∥.

For a fixed Λ, constructing a map ∆ that minimizes the above is the essence of Optimal Recovery [8],

a lead-in to the field of Information-Based Complexity [11], where one can also minimize over Λ.

For any ∆ : Rm → X, the validity of the lower bound

e(∆) ≥ e♭, where e♭ := sup
f ′,f ′′∈K

Λ(f ′)=Λ(f ′′)

∥Γ(f ′)− Γ(f ′′)∥
2

,
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is well known and easy to derive, and so is the complementary inequality e(Γ ◦∆cons) ≤ 2e♭, where

∆cons : Rm → F is any data- and model-consistent map, i.e., one that satisfies Λ(∆cons(y)) = y and

∆cons(y) ∈ K for all y ∈ Λ(K). In short, the map Γ ◦∆cons is nearly optimal (with a factor 2). To

surpass this, one seeks maps ∆opti : Rm → X yielding e(∆opti) ≤ e♭, which are therefore genuinely

optimal (with a factor 1). This is achievable when Γ = γ is a linear functional—throughout,

lowercase Greek letters are used for functionals. This classical result is due to Smolyak (see e.g. [9,

Theorem 4.7]) when the set K is convex and symmetric about the origin and was refined by Sukharev

[10] when K is merely convex. These two results also guarantee the existence of a genuinely optimal

estimation map ∆opti : Rm → R which is linear in the former case and affine in the latter.

The goal of this article is, firstly, to exhibit examples of nonlinear yet ‘simple’ functionals γ : F → R
for which ‘simple’ genuinely optimal estimation maps δopti : Rm → R exist and, secondly, to

complement existence results with practical constructions whenever possible. As a prototypical

example of nonlinear functionals, the maximum of a function f was considered early on with near

optimality in mind, see e.g. [12]. With genuine optimality in mind, it has been treated more recently

relatively to a model set K consisting of Hölder functions within the space F of continuous functions,

see [5]. The arguments were specific to the case at hand, so the situation where the function space

F is a reproducing kernel Hilbert space, say, was not covered. The results obtained in the present

article do apply to such a situation: for instance, Theorem 1 will guarantee the existence of a

genuinely optimal estimation functional δopti : Rm → R which is convex and Proposition 5 will

later provide a practical recipe to construct it, under the proviso that the maximum is over a

finite set in order for a convex optimization program to be solvable. As an extension, Theorem 3

will establish e.g. that the functional outputting the ℓth largest value among a number of linear

functionals comes with a genuinely optimal estimation functional δopti : Rm → R which is the

supremum of infima of affine functionals. This result is based an a (possibly novel) refinement of

the Hahn–Banach dominated extension theorem, see Lemma 2.

Here is a brief outline of the organization of the article: theoretical results such as Theorem 1 and

Theorem 3 are proved right below (Section 2), before computational considerations are addressed

(Section 3), first at an abstract level and then specialized to two particular examples.

2 Optimal Estimation of Some Nonlinear Fuctionals

This section starts by uncovering the ‘simple’ form of an optimal functional for the estimation of

a nonlinear functional γ which appears as the supremum of linear functionals. It continues by

enlarging the result to include γ’s that are a mixed supremum-infimum of linear functionals. In the

process, a seemingly novel refinement of Hahn–Banach dominated extension theorem is established.

The section ends with a discussion on the handling of possible errors in the observation procedure.
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2.1 The supremum of linear functionals

In the result presented below, valid in an arbitrary normed space F , the nonlinear functional γ to

be optimally estimated is the supremum of linear functionals indexed by a set I. Since the latter

need not be finite, it transpires that any norm �f� = max{η(f) : η ∈ F ∗ with � η�∗ = 1} can

be optimally estimated by way of a functional δopti : Rm → R which, as the supremum of affine

functionals, is a convex functional. Of course, an analog result could be obtained if γ was the

infimum of linear functionals by simply applying Theorem 1 to −γ.

Theorem 1. Suppose that the model set K is convex and contains the origin and that the functional

γ : F → R is sup-linear, i.e., of the form

γ(f) = sup
i∈I

γi(f), f ∈ F,

where the γi ∈ F ∗ are linear functionals. Then there exists an optimal estimation functional

δopti : Rm → R which is also sup-affine, i.e., of the form

δopti(y) = sup
i∈I

(
c
(i)
0 +

m∑
k=1

c
(i)
k yk

)
, y ∈ Rm.

Proof. As a first step, the previously mentioned lower bound is rewritten as

e♭ = sup
f ′,f ′′∈K

Λ(f ′)=Λ(f ′′)

γ(f ′)− γ(f ′′)

2
= sup

f̄∈K̄∩ker(Λ̄)

γ̄′(f̄)− γ̄′′(f̄)

2
,

where one has introduced the set K̄ := K×K ⊆ F̄ := F ×F , as well as the linear map Λ̄ : F̄ → Rm

and the (nonlinear) functionals γ̄′, γ̄′′ : F̄ → R defined via

Λ̄([f ′; f ′′]) = Λ(f ′)− Λ(f ′′), γ̄′([f ′; f ′′]) = γ(f ′), γ̄′′([f ′; f ′′]) = γ(f ′′).

With ρK̄ denoting the Minkowski functional of K̄—which is a sublinear (i.e., positively homogeneous

and convex) functional by virtue of the fact that K̄ is convex and contains the origin—one has

γ̄′(f̄)− γ̄′′(f̄) ≤ 2e♭ρK̄(f̄) whenever f̄ ∈ ker(Λ̄). Also introducing linear functionals γ̄′i, γ̄
′′
i : F̄ → R

defined for all i ∈ I via γ̄′i([f
′; f ′′]) = γi(f

′) and γ̄′′i ([f
′; f ′′]) = γi(f

′′), so that γ̄′(f̄) = supi∈I γ̄
′
i(f̄),

the previous inequality ensures that, for all i⋆ ∈ I, one has γ̄′i⋆(f̄) ≤ 2e♭ρK̄(f̄) + γ̄′′(f̄) whenever

f̄ ∈ ker(Λ̄). Fixing i⋆ and noticing that 2e♭ρK̄ + γ̄′′ is a sublinear functional, the Hahn–Banach

dominated extension theorem (see e.g. [2, Theorem 4, p. 49]) applies to guarantee the existence

of a linear functional µi⋆ ∈ F̄ ∗ such that µi⋆ | ker(Λ̄) = γ̄′i⋆ | ker(Λ̄) and µi⋆(f̄) ≤ 2e♭ρK̄(f̄) + γ̄′′(f̄) for

all f̄ ∈ F̄ . In view of the equivalence between the fact that γ̄′i⋆ − µi⋆ vanishes on ker(Λ̄) and the

existence of c(i⋆) ∈ Rm such that γ̄′i⋆ − µi⋆ =
∑m

k=1 c
(i⋆)
k λ̄k, one derives that

γ̄′i⋆(f̄)−
m∑
k=1

c
(i⋆)
k λ̄k(f̄) ≤ 2e♭ρK̄(f̄) + γ̄′′(f̄) for all f̄ ∈ F̄ .
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In other words, for any i⋆ ∈ I, it holds that

γi⋆(f
′)−

m∑
k=1

c
(i⋆)
k

(
λk(f

′)− λk(f
′′)
)
≤ 2e♭max{ρK(f ′), ρK(f

′′)}+ γ(f ′′) for all f ′, f ′′ ∈ F,

which immediately yields the key observation that

(1)

(
γi⋆(f

′)−
m∑
k=1

c
(i⋆)
k λk(f

′)

)
−
(
γ(f ′′)−

m∑
k=1

c
(i⋆)
k λk(f

′′)

)
≤ 2e♭ for all f ′, f ′′ ∈ K.

At this point, for each i⋆ ∈ I, one defines

(2) c
(i⋆)
0 = inf

f∈K

(
γ(f)−

m∑
k=1

c
(i⋆)
k λk(f) + e♭

)
.

This definition readily implies that, for each i⋆ ∈ I, one has γ(f)−
(
c
(i⋆)
0 +

∑m
k=1 c

(i⋆)
k λk(f)

)
≥ −e♭

for all f ∈ K. One can now take the supremum over i⋆ ∈ I to arrive at

(3) γ(f)− sup
i∈I

(
c
(i)
0 +

m∑
k=1

c
(i)
k λk(f)

)
≥ −e♭ for all f ∈ K.

Next, for each i⋆ ∈ I, one selects f ′′ ∈ K such that γ(f ′′) −
∑m

k=1 c
(i⋆)
k λk(f

′′) + e♭ is equal (or is

arbitrarily close) to c
(i⋆)
0 . Writing (1) for this f ′′ and for f ′ being an arbitrary f ∈ K leads to

γi⋆(f) ≤ e♭ +
(
c
(i⋆)
0 +

∑m
k=1 c

(i⋆)
k λk(f)

)
, and hence γi⋆(f) ≤ e♭ + supi∈I

(
c
(i)
0 +

∑m
k=1 c

(i)
k λk(f)

)
.

Taking the supremum over i⋆ ∈ I yields

(4) γ(f)− sup
i∈I

(
c
(i)
0 +

m∑
k=1

c
(i)
k λk(f)

)
≤ e♭ for all f ∈ K.

Now defining the estimation functional δopti : Rm → R by δopti(y) = supi∈I

(
c
(i)
0 +

∑m
k=1 c

(i)
k yk

)
,

combining inequalities (3) and (4) show that

e(δopti) = sup
f∈K

∣∣γ(f)− δopti(Λ(f))
∣∣ ≤ e♭.

This proves the genuine optimality of the sup-affine functional δopti.

2.2 The mixed supremum-infimum of linear functionals

It is now acquired that there is a ‘simple’ optimal algorithm for the estimation of the (pointwise)

largest value of linear functionals γ1, . . . , γd, say. Is there also a ‘simple’ optimal algorithm for the

estimation of the (pointwise) ℓth largest value of these linear functionals? The answer is yes, as

established in Theorem 3 below. ‘Simple’ in this case means the mixed sup-inf of affine functionals.
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This mirrors the sup-inf/inf-sup nature of the functional γ↓ℓ associating to f ∈ F the ℓth largest

value of γ1(f), . . . , γd(f), namely

γ↓ℓ (f) = sup
|I|=ℓ

inf
i∈I

γi(f) = inf
|J |=d+1−ℓ

sup
j∈J

γj(f).

The essential feature is to have both a sup-inf and an inf-sup representation of the nonlinear

functional at hand, as e.g. in Courant–Fischer characterization of the ℓth largest eigenvalue. Thus,

the result will also apply to the difference of suprema of linear functionals, since

sup
i∈I

µi(f)− sup
j∈J

νj(f) = sup
i∈I

inf
j∈J

(µi − νj)(f) = inf
j∈J

sup
i∈I

(µi − νj)(f).

A crucial part of the argument will be a refinement of Hahn–Banach dominated extension theorem.

It goes in a different direction than other refinements that the author encountered before, such as

[2, Theorem 11, p. 53]. Essentially, it says that the infimum of linear functionals dominated by a

sublinear functional on a subspace can be extended while maintaining the domination in a favorable

way (more favorable, of course, than extending each linear functional individually). While a fully

general statement would require Zorn lemma, it is enough here to establish a restricted version,

which is exactly what is needed later.

Lemma 2. Let V be a vector space and let U be a finite codimensional subspace of V given as

U = ker(η1)∩ · · · ∩ker(ηm) for some linear functionals η1, . . . , ηm ∈ V ∗. If µi ∈ V ∗, i ∈ I, are linear

functionals on V and if ρ is a sublinear functional on V such that

inf
i∈I

µi(u) ≤ ρ(u) for all u ∈ U,

then there exist scalars c1, . . . , cm ∈ R such that

inf
i∈I

µi(v) +

m∑
k=1

ckηk(v) ≤ ρ(v) for all v ∈ V.

Proof. By immediate induction, it suffices to establish the result when m = 1, i.e., when U = ker(η)

for a single linear functional η ∈ V ∗. The proof follows very classical arguments, with the additional

usage of infi xi + infi yi ≤ infi(xi + yi). Let w ∈ V be such that η(w) = 1. Since, for any

u′, u′′ ∈ ker(η),

inf
i∈I

(µi(u
′) + µi(w)) + inf

i∈I
(µi(u

′′)− µi(w)) ≤ inf
i∈I

(µi(u
′) + µi(u

′′)) = inf
i∈I

µi(u
′ + u′′)

≤ ρ(u′ + u′′) ≤ ρ(u′ + w) + ρ(u′′ − w),

we can find a scalar c ∈ R such that, for any u′, u′′ ∈ ker(η),

inf
i∈I

(µi(u
′′)− µi(w))− ρ(u′′ − w) ≤ c ≤ ρ(u′ + w)− inf

i∈I
(µi(u

′) + µi(w)).

Then, for any v ∈ V \ ker(η) written as v = u+ tw with u ∈ ker(η) and t ̸= 0,
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• if t > 0, then v = t(u′ + w) with u′ ∈ ker(η), and

inf
i∈I

µi(v) + c η(v) = t
(
inf
i∈I

(µi(u
′) + µi(w)) + c

)
≤ t

(
ρ(u′ + w)

)
= ρ(v);

• if t < 0, then v = −t(u′′ − w) with u′′ ∈ ker(η), and

inf
i∈I

µi(v) + c η(v) = −t
(
inf
i∈I

(µi(u
′′)− µi(w))− c

)
≤ −t

(
ρ(u′′ − w)

)
= ρ(v).

These two cases show that infi∈I µi(v) + c η(v) ≤ ρ(v) holds for all v ∈ V , as required.

With this technical lemma at hand, the main result of the subsection can now be stated and proved.

Theorem 3. Suppose that the model set K is convex and contains the origin and that the functional

γ : F → R can be expressed as

γ(f) = sup
a∈A

inf
i∈Ia

γi(f) = inf
b∈B

sup
j∈Jb

γj(f), f ∈ F,

where the γi ∈ F ∗ are linear functionals. Then there exists an optimal estimation functional

δopti : Rm → R which has the form

δopti(y) = sup
a∈A

inf
b∈B

(
c
(a,b)
0 +

m∑
k=1

c
(a,b)
k yk

)
, y ∈ Rm.

Proof. One starts from the lower bound e♭ expressed once again as

e♭ = sup
f ′,f ′′∈K

Λ(f ′)=Λ(f ′′)

γ(f ′)− γ(f ′′)

2
= sup

f̄∈K̄∩ker(Λ̄)

γ̄′(f̄)− γ̄′′(f̄)

2
,

where it is recalled that the ‘bar’-notation involves K̄ := K×K ⊆ F̄ := F×F , which has Minkowski

functional ρK̄, and Λ̄ : F̄ → Rm, γ̄′, γ̄′′, γ̄′i, γ̄
′′
i : F̄ → R, which are defined via

Λ̄([f ′; f ′′]) = Λ(f ′)− Λ(f ′′), γ̄′([f ′; f ′′]) = γ(f ′), γ̄′′([f ′; f ′′]) = γ(f ′′),

γ̄′i([f
′; f ′′]) = γi(f

′), γ̄′′i ([f
′; f ′′]) = γi(f

′′).

In this way, one has γ̄′(f̄) ≤ 2e♭ρK̄(f̄) + γ̄′′(f̄) whenever f̄ ∈ ker(Λ̄). Therefore, for all a⋆ ∈ A and

all b⋆ ∈ B,

inf
i∈Ia⋆

γ̄′i(f̄) ≤ 2e♭ρK̄(f̄) + sup
j∈Jb⋆

γ̄′′j (f̄) whenever f̄ ∈ ker(Λ̄).

This is the time to invoke Lemma 2, justifying the existence of c(a⋆,b⋆) ∈ Rm such that

inf
i∈Ia⋆

γ̄′i(f̄)−
m∑
k=1

c
(a⋆,b⋆)
k λ̄k(f̄) ≤ 2e♭ρK̄(f̄) + sup

j∈Jb⋆
γ̄′′j (f̄) for all f̄ ∈ F̄ .
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It follows that, for any a⋆ ∈ A and b⋆ ∈ B, one has

(5)

(
inf
i∈Ia⋆

γi(f
′)−

m∑
k=1

c
(a⋆,b⋆)
k λk(f

′)

)
−
(

sup
j∈Jb⋆

γj(f
′′)−

m∑
k=1

c
(a⋆,b⋆)
k λk(f

′′)

)
≤ 2e♭ for all f ′, f ′′ ∈ K.

At this point, for each a⋆ ∈ A and b⋆ ∈ B, one defines

c
(a⋆,b⋆)
0 := inf

f∈K

(
sup
j∈Jb⋆

γj(f)−
m∑
k=1

c
(a⋆,b⋆)
k λk(f) + e♭

)
.

For each a⋆ ∈ A and b⋆ ∈ B, one immediately obtains that, for all f ∈ K,

sup
j∈Jb⋆

γj(f) ≥ −e♭ +

(
c
(a⋆,b⋆)
0 +

m∑
k=1

c
(a⋆,b⋆)
k λk(f)

)
≥ −e♭ + inf

b∈B

(
c
(a⋆,b)
0 +

m∑
k=1

c
(a⋆,b)
k λk(f)

)
.

Now, taking the infimum over b⋆ ∈ B on the left-hand side yields

γ(f) ≥ −e♭ + inf
b∈B

(
c
(a⋆,b)
0 +

m∑
k=1

c
(a⋆,b)
k λk(f)

)
for all f ∈ K,

and finally taking the supremum over a⋆ ∈ A on the right-hand side and rearranging gives

(6) γ(f)− sup
a∈A

inf
b∈B

(
c
(a,b)
0 +

m∑
k=1

c
(a,b)
k λk(f)

)
≥ −e♭ for all f ∈ K.

Next, for each a⋆ ∈ A and b⋆ ∈ B, one selects f ′′ ∈ K achieving (or coming arbitrarily close to) the

infimum defining c
(a⋆,b⋆)
0 , so writing (5) for this f ′′ and for f ′ being an arbitrary f ∈ K leads to

inf
i∈Ia⋆

γi(f)−
(
c
(a⋆,b⋆)
0 +

m∑
k=1

c
(a⋆,b⋆)
k λk(f)

)
≤ e♭,

from where it follows, by taking the infimum over b⋆ ∈ B, that

inf
i∈Ia⋆

γi(f) ≤ e♭ + inf
b∈B

(
c
(a⋆,b)
0 +

m∑
k=1

c
(a⋆,b)
k λk(f)

)
≤ e♭ + sup

a∈A
inf
b∈B

(
c
(a,b)
0 +

m∑
k=1

c
(a,b)
k λk(f)

)
.

Finally, taking the supremum over a⋆ ∈ A leads to

(7) γ(f)− sup
a∈A

inf
b∈B

(
c
(a,b)
0 +

m∑
k=1

c
(a,b)
k λk(f)

)
≤ e♭ for all f ∈ K.

Defining the estimation functional δopti : Rm → R by δopti(y) = supa∈A infb∈B
(
c
(a,b)
0 +

∑m
k=1 c

(a,b)
k yk

)
and combining inequalities (6) and (7) show that

e(δopti) = sup
f∈K

∣∣γ(f)− δopti(Λ(f))
∣∣ ≤ e♭.

This proves the optimality of the sup-inf-affine functional δopti.
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2.3 Handling observation error

In realistic situations, the observations made on the unknown object f are not exact. They typically

take the form λk(f) + ek for some unknown e ∈ Rm. This vector can be modeled stochastically,

as done in [3] but not considered here, or deterministically via an assumption e ∈ E , as considered
here, where E is convex set containing the origin. It is folklore to remark that this ‘inaccurate

scenario’ reduces to the ‘accurate scenario’ by focusing on the compound object (f, e) belonging

to the model set K × E and acquired via the linear observations λ̃k((f, e)) = λk(f) + ek. For

instance, since a sup-linear functional γ acting on f is also a sup-linear functional acting on (f, e),

Theorem 1 will still guarantee that there exists an optimal functional for the estimation of γ which

is sup-affine. The divergence with the ‘accurate scenario’ will essentially occur in the construction

of this optimal sup-affine functional. Precisely, as will become apparent in the next section, the

support function of the model set will play a central role. For the set K, it is defined on linear

functionals η ∈ F ∗ by

|||η|||K := sup
f∈K

η(f).

In the ‘inaccurate scenario’, this will have to be replaced by the support function of K × E at an

associated linear functional η̃ defined on F × Rm. As an example, if c ∈ Rm is a coefficient vector

and E = Bm
p is a ball in ℓp-space for some p ∈ [1,∞] with conjugate exponent p′ ∈ [1,∞], one easily

observes that

∣∣∣∣∣∣∣∣∣∑m

k=1
ckλ̃k

∣∣∣∣∣∣∣∣∣
K×Bm

p

= sup
(f,e)∈K×Bm

p

∑m

k=1
ck
(
λk(f) + ek

)
=

∣∣∣∣∣∣∣∣∣∑m

k=1
ckλk

∣∣∣∣∣∣∣∣∣
K
+ ∥c∥p′ .

This observation can be used in Propositions 5 and 6 to deal with the ‘inaccurate scenario’ for the

construction of the optimal algorithms presented next.

3 Computational Realizations

The purpose of this section is to provide computational recipes for the practical construction of the

optimal estimation functional appearing in Theorem 1 and, to a lesser extent, Theorem 3. At first,

a rather abstract optimization program outputting the desired coefficient vectors will be presented.

Then, for the sake of implementation in a reproducible matlab file1, two situations of specific

interest will be spelled out in separate subsections.

1Accessible from the author’s webpage or at https://github.com/foucart/COR.

8

https://github.com/foucart/COR


S. Foucart

3.1 Generic convex optimization programs

In most of this subsection and throughout the next two, the nonlinear functional γ : F → R
denotes a sup-linear functional, i.e., it has the form γ(f) = supi∈I γi(f) with the γi’s being linear

functionals. It was established in Theorem1 that the functionals δ : Rm → R minimizing the

estimation error e(δ) = sup{|γ(f)− δ(Λ(f))| : f ∈ K} can be sought among sup-affine functionals.

As a preliminary, for a fixed such δ, one highlights how e(δ) can be computed by solving a convex

optimization program. The crucial point is that ν := δ ◦ Λ : F → R is itself a sup-affine functional

in this case. The statement below features the standard simplex associated with the index set I,

defined when I is finite by

SI :=

{
σ ∈ RI : σi ≥ 0 for all i ∈ I and

∑
i∈I

σi = 1

}
.

Proposition 4. Let K be a convex set. For a sup-linear functional γ : F → R and a sup-affine

functional ν : F → R given, for f ∈ F , by

γ(f) = sup
i∈I

γi(f) and ν(f) = sup
i∈I

(
νi(f) + bi

)
,

where the γi, νi ∈ F ∗ are linear functionals and the bi ∈ R are scalars, one has

(8) sup
f∈K

|γ(f)− ν(f)| = inf
e∈R

σ(i⋆),τ (i⋆)∈SI

e s.to

{∣∣∣∣∣∣γi⋆ −∑
i∈I σ

(i⋆)
i νi

∣∣∣∣∣∣
K ≤ e+

∑
i∈I σ

(i⋆)
i bi, i⋆ ∈ I,∣∣∣∣∣∣νi⋆ −∑

i∈I τ
(i⋆)
i γi

∣∣∣∣∣∣
K ≤ e− bi⋆ , i⋆ ∈ I.

Proof. The supremum appearing on the left-hand side of (8) is nothing else than the infimum value

of e subject to |γ(f)− ν(f)| ≤ e for all f ∈ K. The latter decouples as the two constraints

(9) γ(f)− ν(f) ≤ e for all f ∈ K and ν(f)− γ(f) ≤ e for all f ∈ K.

In view of γ(f) = supi∈I γi(f) and of

−ν(f) = − sup
i∈I

(
νi(f) + bi

)
= inf

i∈I

(
− νi(f)− bi

)
= inf

σ∈SI

∑
i∈I

σi
(
− νi(f)− bi

)
,

the first constraint in (9) is equivalent to a set of constraints indexed by i⋆ ∈ I, namely

γi⋆(f) + inf
σ∈SI

∑
i∈I

σi
(
− νi(f)− bi

)
≤ e for all f ∈ K.

Each of these individual constraints reads

sup
f∈K

inf
σ∈SI

(
γi⋆(f) +

∑
i∈I

σi
(
− νi(f)− bi

))
≤ e.

9
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Since the inner expression depends affinely of f ∈ K, which is a convex set, and also affinely

on σ ∈ SI , which is a convex and compact set, von Neumann minimax theorem legitimizes the

exchange of sup and inf, so that the above constraint reads

inf
σ∈SI

sup
f∈K

(
γi⋆(f) +

∑
i∈I

σi
(
− νi(f)− bi

))
≤ e.

All in all, the first constraint in (9) is equivalent to the existence of σ(i⋆) ∈ SI , i⋆ ∈ I, such that

sup
f∈K

(
γi⋆(f)−

∑
i∈I

σ
(i⋆)
i νi(f)

)
≤ e+

∑
i∈I

σ
(i⋆)
i bi,

which is tautologically equivalent to the first set of convex constraints indexed by i⋆ appearing in (8).

Likewise, with very similar details left to the reader, the second constraint in (9) is equivalent to

the existence of τ (i⋆) ∈ SI , i⋆ ∈ I, obeying the second set of convex constraints indexed by i⋆
appearing in (8). Incorporating all the σ(i⋆) and τ (i⋆) as optimization variables, one arrives at the

announced convex optimization program.

Turning to the minimization of the estimation error e(δ) over all possible functionals δ : Rm → R,
or in fact only over all functionals of the form δc(y) = supi∈I

(
c
(i)
0 +

∑m
k=1 c

(i)
k yk

)
, y ∈ Rm, one

notices that this error becomes

e(δc) = sup
f∈K

|γ(f)− νc(f)|, with νc := δc ◦ Λ : F → R being a sup-affine functional.

At a fixed c ∈ (R × Rm)I , Proposition 4 just indicated how to compute e(δc) by solving a convex

optimization program. Regrettably, a straightforward minimization over c as well seems out of

reach, due to the presence of products σ
(i⋆)
i c

(i)
k of optimization variables generated through the first

set of constraints. An alternative route, pursued below, consists in translating the constructive

argument of Theorem 1 into a manageable optimization program.

Proposition 5. Given a convex set K containing the origin, an optimal functional δopti : Rm → R
for the estimation of a sup-linear functional γ(f) = supi∈I γi(f), f ∈ F , is obtained as the sup-affine

functional δopti(y) = supi∈I
(
ĉ
(i)
0 +

∑m
k=1 ĉ

(i)
k yk

)
, y ∈ Rm, where the ‘hat’-notation denotes solutions

to the convex optimization program

(10) minimize
e∈R,e′,e′′∈RI

c(i⋆)∈Rm

σ(i⋆)∈SI

e s.to


e′i⋆ + e′′i⋆ ≤ 2e, i⋆ ∈ I,∣∣∣∣∣∣γi⋆ −∑m

k=1 c
(i⋆)
k λk

∣∣∣∣∣∣
K ≤ e′i⋆ , i⋆ ∈ I,∣∣∣∣∣∣−∑

i∈I σ
(i⋆)
i γi +

∑m
k=1 c

(i⋆)
k λk

∣∣∣∣∣∣
K ≤ e′′i⋆ , i⋆ ∈ I.

Subsequently, the remaining coefficients ĉ
(i)
0 ∈ R are obtained as ĉ

(i⋆)
0 = ê− ê′′i⋆ for all i⋆ ∈ I.

10
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Proof. Keeping the proof of Theorem 1 in mind, recall that the key resided in (1) being satisfied

for all i⋆ ∈ I, i.e.,

sup
f ′∈K

(
γi⋆(f

′)−
m∑
k=1

c
(i⋆)
k λk(f

′)

)
+ sup

f ′′∈K

(
− γ(f ′′) +

m∑
k=1

c
(i⋆)
k λk(f

′′)

)
≤ 2e

for some c(i⋆) ∈ Rm and for e ∈ R as small as possible, i.e., e = e♭. Thus, introducing slack variables

e′i⋆ , e
′′
i⋆
∈ R bounding the above suprema, the task consists in minimizing e subject to e′i⋆ +e′′i⋆ ≤ 2e,

to supf ′∈K
(
γi⋆(f

′)−
∑m

k=1 c
(i⋆)
k λk(f

′)
)
≤ e′i⋆ , and to supf ′′∈K

(
−γ(f ′′)+

∑m
k=1 c

(i⋆)
k λk(f

′′)
)
≤ e′′i⋆ for

all i⋆ ∈ I. The first of these constraints are exactly the first constraints in (10), while the second

ones reduce to the second constraints in (10) simply by the definition of the support function.

Considering now the third and last constraints, in view of

−γ(f ′′) = − sup
i∈I

γi(f
′′) = inf

i∈I
(−γi(f

′′)) = inf
σ∈SI

∑
i∈I

σi(−γi(f
′′)),

one obtains

sup
f ′′∈K

(
− γ(f ′′) +

m∑
k=1

c
(i⋆)
k λk(f

′′)

)
= sup

f ′′∈K
inf
σ∈SI

(
−
∑
i∈I

σiγi(f
′′) +

m∑
k=1

c
(i⋆)
k λk(f

′′)

)

= inf
σ∈SI

sup
f ′′∈K

(
−
∑
i∈I

σiγi(f
′′) +

m∑
k=1

c
(i⋆)
k λk(f

′′)

)
,

where the exchange of sup and inf relied on von Neumann minimax theorem, in the same way as

for the proof of Proposition 4. As a result, the constraints can be rephrased as the existence of

σ(i⋆) ∈ SI such that ∣∣∣∣∣∣∣∣∣−∑
i∈I

σ
(i⋆)
i γi +

m∑
k=1

c
(i⋆)
k λk

∣∣∣∣∣∣∣∣∣
K
≤ e′′i⋆ .

Incorporating all the σ(i⋆) ∈ SI as optimization variables, one arrives at the third constraints

in (10). All in all, it has been justified that the convex optimization program (10) outputs e♭
(i.e., the minimal error e(δ) over all possible estimation functionals δ) as ê and the coefficient

vectors making the linear part of δopti as the ĉ(i⋆) ∈ Rm. Finally, the announced expression for the

remaining coefficients ĉ
(i⋆)
0 ∈ R follows from their very definition (2), written as

ĉ
(i⋆)
0 = − sup

f ′′∈K

(
− γ(f ′′) +

m∑
k=1

ĉ
(i⋆)
k λk(f

′′)

)
+ e♭,

and from the identification of the above supremum as ê′′i⋆ and of e♭ as ê.

When estimating a mixed sup-inf-linear functional, it is as also possible to translate the proof

of Theorem 3 into a practical recipe for the construction of the optimal sup-inf-affine functional.

The key resides again in fulfilling the inequalities (5), which are treated as above. More precisely,

11
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one proceeds in exactly the same way (save for the notation) to recast the bound on the second

summand in the left-hand side of of (5) by a slack variable e′′a⋆,b⋆ , and the argument will also apply

when recasting a bound on the fist summand by a slack variable e′a⋆,b⋆ . With details left out, one

arrives at the convex optimization program displayed below.

Proposition 6. Under the setting of Theorem 3, the optimal estimation functional δopti : Rm → R
has the sup-inf-affine form δopti(y) = supa∈A infb∈B

(
ĉ
(a,b)
0 +

∑m
k=1 ĉ

(a,b)
k yk

)
, y ∈ Rm, where the

‘hat’-notation denotes solutions to the convex optimization program

minimize
e∈R,e′,e′′∈RA×B

c(a⋆,b⋆)∈Rm

σ(a⋆,b⋆)∈SIa⋆

τ (a⋆,b⋆)∈SIb⋆

e s.to


e′a⋆,b⋆ + e′′a⋆,b⋆ ≤ 2e, a⋆ ∈ A, b⋆ ∈ B,∣∣∣∣∣∣∑

i∈Ia⋆ σ
(a⋆,b⋆)
i γi −

∑m
k=1 c

(a⋆,b⋆)
k λk

∣∣∣∣∣∣
K ≤ e′a⋆,b⋆ , a⋆ ∈ A, b⋆ ∈ B,∣∣∣∣∣∣−∑

j∈Jb⋆
τ
(a⋆,b⋆)
j γj +

∑m
k=1 c

(a⋆,b⋆)
k λk

∣∣∣∣∣∣
K ≤ e′′a⋆,b⋆ , a⋆ ∈ A, b⋆ ∈ B.

Subsequently, the coefficients ĉ
(a,b)
0 ∈ R are obtained as ĉ

(a⋆,b⋆)
0 = ê− ê′′a⋆,b⋆ for all a⋆ ∈ A, b⋆ ∈ B.

Arguably, Propositions 5 and 6 are still abstract statements. Whether they really translate into

practical constructions depends on the specific model set K and its amenability to numerical com-

putations. Concerning Proposition 6, there is the added issue of the number of constraints, which

is |A| × |B|. In the example of the ℓth largest value among d linear functionals, one has

|A| = |{I ∈ [1 : d] : |I| = ℓ}| =
(
d

ℓ

)
and |B| = |{J ∈ [1 : d] : |J | = d+ 1− ℓ}| =

(
d

ℓ− 1

)
,

so |A| × |B| behaves exponentially in d unless ℓ or d − ℓ is a small constant. For this reason, one

concentrates only on the estimation of the maximum of linear functionals when expounding on the

two relevant examples presented in the next subsections.

3.2 Polytopal models in ℓ∞-spaces

Working in F = ℓN∞, the convex model set containing the origin (but not necessarily symmetric)

considered here is the polytope

Kpoly :=
{
f ∈ ℓN∞ : ⟨aℓ, f⟩ ≤ 1 for all ℓ ∈ L

}
for prescribed aℓ ∈ ℓN1 . Using duality in linear programming, it is routine to verify that the support

function of Kpoly, evaluated at a linear functional η defined for f ∈ ℓN∞ by η(f) = ⟨g, f⟩, can be

expressed as

|||η|||Kpoly = sup
f∈RN

⟨g, f⟩ s.to ⟨aℓ, f⟩ ≤ 1 for all ℓ ∈ L

= inf
s∈RL

∑
ℓ∈L

sℓ s.to s ≥ 0 and
∑
ℓ∈L

sℓaℓ = g.

12



S. Foucart

Therefore, an inequality constraint |||η|||Kpoly ≤ κ found as a constraint in an optimization program

can be rephrased as the existence of some s ∈ RL
+ such that

∑
ℓ∈L sℓ ≤ κ and

∑
ℓ∈L sℓaℓ = g,

and subsequently s can be incorporated in the optimization variables. For instance, with uk ∈ ℓN1
representing the linear functional λk and wi ∈ ℓN1 representing the linear functional γi, so that

λk(f) = ⟨uk, f⟩ and γi(f) = ⟨wi, f⟩ for all f ∈ ℓN∞,

the convex optimization program from Proposition 5 becomes:

Linear program for the optimal estimation of γ = supi∈I γi with model Kpoly.

minimize
e∈R,e′,e′′∈RI

c(i⋆)∈Rm

σ(i⋆)∈SI

s(i⋆),t(i⋆)∈RL
+

e s.to


e′i⋆ + e′′i⋆ ≤ 2e,

∑
ℓ∈L s

(i⋆)
ℓ ≤ e′i⋆ ,

∑
ℓ∈L t

(i⋆)
ℓ ≤ e′′i⋆ , i⋆ ∈ I,∑

ℓ∈L s
(i⋆)
ℓ aℓ = wi⋆ −

∑m
k=1 c

(i⋆)
k uk, i⋆ ∈ I,∑

ℓ∈L t
(i⋆)
ℓ aℓ = −

∑
i σ

(i⋆)
i wi +

∑m
k=1 c

(i⋆)
k uk, i⋆ ∈ I.

After solving this linear program, one can construct an optimal estimation functional δopti which

has the generic sup-affine form

(11) δb,z(y) = sup
i∈I

(
bi + ⟨zi, y⟩

)
, y ∈ Rm.

For good measure, one can verify that the minimal value of e found above agrees with e(δopti) when

the latter is computed by solving the convex program from Proposition 4. In the present case, it

becomes:

Linear program to compute e(δb,z) for a fixed sup-affine functional with model Kpoly.

(12) minimize
e∈R

σ(i⋆),τ (i⋆)∈SI

s(i⋆),t(i⋆)∈RL
+

e s.to


∑

ℓ∈L s
(i⋆)
ℓ ≤ e+

∑
i∈I σ

(i⋆)
i bi,

∑
ℓ∈L t

(i⋆)
ℓ ≤ e− bi⋆ , i⋆ ∈ I,∑

ℓ∈L s
(i⋆)
ℓ aℓ = wi⋆ −

∑
i∈I σ

(i⋆)
i Λ∗zi, i⋆ ∈ I,∑

ℓ∈L t
(i⋆)
ℓ aℓ = Λ∗zi⋆ −

∑
i∈I τ

(i⋆)
i wi, i⋆ ∈ I.

Remark. In F = ℓN∞ and with a convex model, it is somewhat known that there exists an affine

map ∆opti : Rm → ℓN∞ which is genuinely optimal for the estimation of Γ = IdF , i.e., for the full

approximation problem. This is essentially Sukharev’s result applied componentwise. Leaving out

the details, this optimal map has the form

∆opti : y ∈ Rm 7→
[
ĉ(0) +

m∑
k=1

yk ĉ
(k)

]
∈ ℓN∞,
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where the vectors ĉ(0), ĉ(1), . . . , ĉ(m) ∈ ℓN∞ are solutions to the following linear program (involving

the standard basis (v1, . . . , vN ) for RN ):

minimize
e∈R

c(0),c(k)∈RN

s(j),t(j)∈RL
+

e s.to


∑

ℓ∈L s
(j)
ℓ ≤ e+ c

(0)
j ,

∑
ℓ∈L t

(j)
ℓ ≤ e− c

(0)
j , j ∈ [1 : N ],∑

ℓ∈L s
(j)
ℓ aℓ = vj −

∑m
k=1 c

(k)
j uk, j ∈ [1 : N ],∑

ℓ∈L t
(j)
ℓ aℓ = −vj +

∑m
k=1 c

(k)
j uk, j ∈ [1 : N ].

As an initially guess, a natural candidate for the estimation of γ = supi∈I γi could have been the

‘plug-in’ functional δplug = γ ◦∆opti : Rm → R. Since it has the generic sup-affine form (11) with

bi = γi(ĉ
(0)) and (zi)k = γi(ĉ

(k)), the estimation error e(δplug) of this ‘plug-in’ functional can be

computed by solving the linear program (12). Numerical experiments available in the reproducible

file confirm that this guess is not optimal, i.e., that e(δplug) is larger than e(δopti).

3.3 Approximability models in Hilbert spaces

Working now in a Hilbert space F = H, the convex model set containing the origin (but not

necessarily symmetric) considered here is the set of elements that are approximated with prescribed

accuracy ε > 0 by an affine subspace g+ V , where V is an n-dimensional linear subspace of H and

g ∈ H \ V is a fixed element satisfying dist(g, V ) < ε. More precisely, one considers

Kappr := {f ∈ H : dist(f, g + V ) ≤ ε} = {f ∈ H : ∥PV ⊥(f − g)∥ ≤ ε},

where PV ⊥ denotes the orthogonal projector onto the orthogonal complement of V . Motivated by

Optimal Recovery questions, such approximability sets (with g = 0) were introduced in [1]. Based

on an observation made (with g = 0) in [6, Subsection 3.3], their support function evaluated at a

linear functional η can be expressed as

|||η|||Kappr = η(g) +

{
ε∥η∥∗ if η|V = 0,

+∞ otherwise.

Consequently, still using the notation uk ∈ H for the Riesz representer of the linear functional λk

and wi ∈ H for the Riesz representers of the linear functional γi—in a reproducing kernel Hilbert

space with kernel k, note that wi = k(·, x(i)) if γi is the evaluation at a point x(i)—the convex

optimization program from Proposition 5 becomes:

14
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Second-order cone program for the optimal estimation of γ = supi∈I γi with model Kappr.

minimize
e∈R,e′,e′′∈RI

c(i⋆)∈Rm

σ(i⋆)∈SI

e

s.to


e′i⋆ + e′′i⋆ ≤ 2e, i⋆ ∈ I,

wi⋆ −
∑m

k=1 c
(i⋆)
k uk ∈ V ⊥, −

∑
i∈I τ

(i⋆)
i wi +

∑m
k=1 c

(i⋆)
k uk ∈ V ⊥, i⋆ ∈ I,

ε
∥∥wi⋆ −

∑m
k=1 c

(i⋆)
k uk

∥∥ ≤ e′i⋆ − ⟨wi⋆ −
∑m

k=1 c
(i⋆)
k uk, g⟩, i⋆ ∈ I,

ε
∥∥−

∑
i∈I σ

(i⋆)
i wi +

∑m
k=1 c

(i⋆)
k uk

∥∥ ≤ e′′i⋆ − ⟨−
∑

i∈I σ
(i⋆)
i wi +

∑m
k=1 c

(i⋆)
k uk, g⟩, i⋆ ∈ I.

As in the previous subsection, one can construct an optimal estimation functional δopti of the

generic sup-affine form (11) after solving the above second-order cone program. And again, for

good measure, one can verify that the minimal value of e just found agrees with e(δopti) when

the latter is computed by solving the convex program from Proposition 4. In the present case, it

becomes:

Second-order cone program to compute e(δb,z) for a fixed sup-affine functional with model Kappr.

minimize
e∈R

σ(i⋆),τ (i⋆)∈SI

e(13)

s.to


wi⋆ −

∑
i∈I σ

(i⋆)
i Λ∗zi ∈ V ⊥, Λ∗zi⋆ −

∑
i∈I τ

(i⋆)
i wi ∈ V ⊥, i⋆ ∈ I,

ε∥wi⋆ −
∑

i∈I σ
(i⋆)
i Λ∗zi∥ ≤ e+

∑
i∈I σ

(i⋆)
i bi − ⟨wi⋆ −

∑
i∈I σ

(i⋆)
i Λ∗zi, g⟩, i⋆ ∈ I,

ε∥Λ∗zi⋆ −
∑

i∈I τ
(i⋆)
i wi∥ ≤ e− bi⋆ − ⟨Λ∗zi⋆ −

∑
i∈I τ

(i⋆)
i wi, g⟩, i⋆ ∈ I.

Remark. In F = H and with the model set Kappr, there also exists an affine map ∆opti : Rm → H

which is genuinely optimal for the estimation of Γ = IdF . Specifically, it was established in [1] that,

∆cheb : y ∈ Rm 7→
[
argmin

f∈H
∥PV ⊥f∥ s.to Λ(f) = y

]
∈ H

is an optimal2 recovery map in the case g = 0. It then easily follows that

∆opti : y ∈ Rm 7→ g +∆cheb(y − Λ(g)) ∈ H

is an optimal recovery map with g ̸= 0. It is also affine, since ∆cheb is a linear map which admits

the expression (not immediate from above, see [4, Section 10.2] for details)

∆cheb(y) =
m∑
k=1

akuk +
n∑

ℓ=1

bℓvℓ, a =
[
Im − C(C⊤C)−1C⊤]y, b =

[
(C⊤C)−1C⊤]y,

2In fact, it was even shown that ∆cheb(y) is the Chebyshev center for the set Kappr ∩Λ−1({y})—i.e., the center of

the smallest ball containing the set—for any y ∈ Λ(Kappr), which is stronger than the notion of optimality examined

so far.
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where the uk are assumed to be orhonormal, the vℓ form a basis for V , and C ∈ Rm×n is the

cross-gramian matrix with entries ⟨uk, vℓ⟩. Given the above, an initial candidate for the estimation

of γ = supi∈I γi is the ‘plug-in’ functional δplug = γ ◦∆opt : Rm → R. The latter has the generic

sup-affine form (11) with bi = ⟨wi, g − ∆chebΛg⟩ and zi = (∆cheb)∗wi, so the estimation error

e(δplug) of this ‘plug-in’ functional can be computed by solving the second-order cone program (13).

Numerical experiments available in the reproducible file hold a surprise: on all the examples tested,

the ‘plug-in’ functional was optimal, i.e., e(δplug) was equal to e(δopti). In Hilbert spaces, for model

sets of the form {f ∈ H : ∥Tf∥ ≤ 1} with T not necessarily equal to (1/ε)PV ⊥ , it was known (see

[7, Lemma 6]) that ‘plug-in’ maps are indeed optimal for the estimation of linear maps, but the

indication that this phenomenon could remain true for the estimation of some nonlinear maps is

quite striking.
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