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Abstract

Within the theoretical framework of Optimal Recovery, one determines in this article the

best procedures to learn a quantity of interest depending on a Hölder function acquired via

inexact point evaluations at fixed datasites. Best here refers to procedures minimizing worst-

case errors. The elementary arguments hint at the possibility of tackling nonlinear quantities of

interest, with a particular focus on the function maximum. In a local setting, i.e., for a fixed data

vector, the optimal procedure (outputting the so-called Chebyshev center) is precisely described

relatively to a general model of inexact evaluations. Relatively to a slightly more restricted

model and in a global setting, i.e., uniformly over all data vectors, another optimal procedure

is put forward, showing how to correct the natural underestimate that simply returns the data

vector maximum. Jitterred data are also briefly discussed as a side product of evaluating the

minimal worst-case error optimized over the datasites.

Key words and phrases: Hölder functions, Lipschitz functions, optimal recovery, Chebyshev centers,

information-based complexity.

AMS classification: 26A16, 41A28, 46N10, 65D15, 90C47.

1 Introduction

How can one reliably estimate the maximum max[f ] := max{f(x), x ∈ X} of an unknown function

from point evaluation data ym = f(x(m)), m ∈ [1 :M ]? This question has been considered e.g. in

[2, 7] with the common intent of avoiding the construction of a full approximant f̂ to f followed by

the computation of the maximum of f̂ . Both articles also assumed that the datasites x(m) could be

freely chosen and that the data ym were exact. In contrast, in this note, the datasites are prescribed

and the data are inexact, i.e., of the form

(1) ym = f(x(m)) + em with |em| ≤ εm

for some known ε1, . . . , εM ≥ 0 (sometimes all taken to equal the same ε, but definitely not always).

One shortly writes y = Λxf+e, withΛx being the linear map assigning [g(x(1)); · · · ; g(x(M))] ∈ RM

∗S. F. is partially supported by the ONR (N00014-20-1-2787)
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to a function g and with e ∈ Eε := [−ε1, ε1] × · · · × [−εM , εM ]. Clearly, estimating max[f ] from

this information alone is nonsensical without an assumption preventing wild behaviors of f away

from the datasites. Such an assumption is here expressed as f ∈ K, where the so-called model set

K is the set of Lipschitz functions defined on a compact metric space X , or more generally the set

of Hölder functions with parameters α ∈ (0, 1] given by1

(2) Hα := {f : X → R such that |f(x)− f(x′)| ≤ dist(x, x′)α for all x, x′ ∈ X}.

With a focus on worst-case scenarios for assessing a procedure ∆ : y 7→ z designed to estimate

max[f ], or another quantity of interest Γ(f) ∈ Z, one defines worst-case errors

• locally at y via

(3) lwcey,ε(z) := sup
{∥∥Γ(f)− z

∥∥
Z
: f ∈ Hα,y −Λxf ∈ Eε

}
,

• or globally via

(4) gwceε(∆) := sup
{∥∥Γ(f)−∆(Λxf + e)

∥∥ : f ∈ Hα, e ∈ Eε
}
.

Note that the ‘local’ problem of minimizing lwcey,ε(z) over z is harder than solving the ‘global’

problem of minimizing gwceε(∆) over ∆, in the sense that solutions ẑy,ε to the former directly

provide a solution ∆ : y 7→ ẑy,ε to the latter—in passing, one should take notice of the identity

gwceε(∆) = sup{lwcey,ε(∆(y)) : y ∈ Λx(Hα) + Eε}. The framework just described is the one

underlying the theories of Optimal Recovery and subsequently of Information-Based Complexity

(where the optimal selection of Λx is also sought). These theories often assume that the model set

is convex and symmetric and that Γ is a linear map, implying in several situations that a globally

optimal map ∆ can be chosen linear (see [6, Chapter 4], [3, Chapters 9 and 10], and some of the

author’s recent works), hinting once again at the preferability of the global problem over the local

one. The case of a linear quantity of interest Γ treated here provides yet another situation where

global optimality can be achieved by a linear ∆, see Theorem 3. Still, the locally optimal ∆ is

actually not very burdensome either, see Theorem 1. In the case Γ = Id with exact data and a

model class of Lipschitz functions, this result was already obtained in [1], where the inspiration

for the McShane-extension-type functions ℓy,ε and uy,ε of (5)–(6) comes from. The novelty of this

note, beyond the extension of the result to inexact data and Hölder rather than Lipschitz model

sets, is the realization that local and global Optimal Recovery problems may also be completely

solved for some nonlinear quantities of interest—a situation rarely, if ever, considered in Optimal

Recovery—namely for the maximum of a function.

Here is a preview of this note’s contribution about the case Γ(f) = max[f ]. First, Section 2 solves

the local problem by showing, as a specific instance of Theorem 1, that

∆loc : y ∈ Rm 7→ max[ℓy,ε] + max[uy,ε]

2
∈ R

1The set Hα can also be interpreted as a set of Lipschitz functions with respect to a modified metric defined by

distα(x, x
′) = dist(x, x′)α, x, x′ ∈ X .
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is a locally optimal procedure for the estimation of max[f ], where

ℓy,ε(x) := max
m∈[1 :M ]

(
ym − εm − dist(x, x(m))α

)
,(5)

uy,ε(x) := min
m∈[1 :M ]

(
ym + εm + dist(x, x(m))α

)
.(6)

One may be content with using ∆loc as a global solution—it is! Still, Section 3 re-solves the global

problem, under the proviso that the εm’s are all equal to a common ε, by exhibiting a ‘simpler’

globally optimal procedure. Namely, Theorem 4 shows that

∆glo : y ∈ Rm 7→ max
m∈[1 :M ]

(
ym

)
+max[U ],

is a globally optimal procedure for the estimation of max[f ], where the function U is nothing else

than u0,0, i.e., it is given by2

(7) U(x) := min
m∈[1 :M ]

(
dist(x, x(m))α

)
.

This result makes perfect sense in hindsight, at least for exact data (ε = 0). Indeed, a natural

estimation of max[f ] is maxm(ym), but this always underestimates max[f ], so a correction term—

depending on the location of the x(m)’s—should be added. Note that the map ∆glo, unlike ∆loc, is

independent of ε, but its global worst-case error does depend on it.

Section 4 concludes by considering the situation where the metric dist stems from a norm on Rd

and the set X is the unit ball for this norm. The order of the smallest possible global worst-case

error over the choice of x(1), . . . , x(M) is uncovered there. Perhaps unsurprisingly, it features ε and

M−α/d, see Theorem 6. In the particular case of the ℓ∞-norm on Rd, for which X = [−1, 1]d,

one can even give an exact expression for this smallest possible global worst-case error. Perhaps

unsurprisingly again, the best choice for the x(m)’s turn out to be the centers of the hypercubic

cells partitioning [−1, 1]d in a regular grid, see Theorem 7 and its proof.

2 Locally Optimal Solutions

In this section, considering a fixed observation vector y ∈ Rm with entries given, as in (1), by

ym = f(x(m)) + em, |em| ≤ εm, one aims at producing an estimation of max[f ]—or more generally

of a quantity of interest Γ(f) ∈ Z—which is worst-case optimal at this particular y. The optimality,

relatively to the model set Hα of Hölder functions introduced in (2), thus refers to the local sense

as described in (3). For full generality (not used beyond intuitive cases), it is assumed that the

2For α = 1 and dist(x, x′) = ∥x−x′∥ℓd2 , the quantity max[U ] is sometimes called the fill distance of {x(1), . . . , x(M)}
for X , see [9].
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normed space Z into which Γ maps is a Banach lattice. An overview and more details about

Banach lattices can be found e.g. in [5, Chapters 1 and 12], but essentially these are normed spaces

equipped with an order relation, compatible with vector addition and scalar multiplication, such

that one can consider the ‘maximum’ of two elements from Z, and hence the ‘absolute value’ of an

element z ∈ Z as defined by |z| = max{−z, z} ∈ Z. The norm should be monotone3, in the sense

that, for any z, z′ ∈ Z,

(8) |z| ≥ |z′| =⇒ ∥z∥Z ≥ ∥z′∥Z .

As for the quantity of interest Γ : B(X ) → Z with domain equal to the space of bounded functions

on X , it is not assumed to be linear. Instead, it is only required to be monotone, in the sense that,

for any f, f ′ ∈ B(X ),

(9) f ≥ f ′ =⇒ Γ(f) ≥ Γ(f ′).

Note that this covers quite a number of cases: as linear examples, one can think of Γ being the

identity (i.e., Γ(f) = f), a domain restriction (i.e., Γ(f) = f|Ω), and a positive linear functional

(e.g. Γ(f) =
∫
X f), etc.; as nonlinear examples, one can think of Γ being an increasing map applied

pointwise (e.g. Γ(f) = exp(f)) or—the main focus of this note—the maximum of a function (i.e.,

Γ(f) = max[f ]). The result below exactly solves the problem of minimizing the local worst-case

error. The function ℓy,ε and uy,ε appearing there are the ones introduced in (5)–(6).

Theorem 1. For the recovery of a monotone quantity of interest Γ mapping into a Banach lattice Z,

given the data (1) and the model set (2), a minimizer of lwcey,ε(z) over all z ∈ Z is given by

ẑy,ε =
Γ(ℓy,ε) + Γ(uy,ε)

2
,

while the value of the minimum is

r̂y,ε =
∥Γ(uy,ε)− Γ(ℓy,ε)∥Z

2
.

Proof. Central to the argument is a basic observation (elucidating the notation ℓy,ε and uy,ε, which

stands for lower and upper bounds, respectively). It starts by writing, for any f ∈ Hα, any x ∈ X ,

and any m ∈ [1 :M ],

|f(x)− ym| ≤ |f(x(m))− ym|+ |f(x)− f(x(m))| ≤ εm + dist(x, x(m))α,

that is to say

ym − εm − dist(x, x(m))α ≤ f(x) ≤ ym + εm + dist(x, x(m))α.

Taking the maximum and minimum over m ∈ [1 :M ], one obtains

(10) ℓy,ε(x) ≤ f(x) ≤ uy,ε(x) for all f ∈ Hα and x ∈ X .

3There are several notions of monotone norms, listed and compared in [4].
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Furthermore, one observes that both ℓy,ε and uy,ε are data-consistent and model-consistent, i.e.,

|ym − ℓy,ε(x
(m))| ≤ εm and |ym − uy,ε(x

(m))| ≤ εm for all m ∈ [1 :M ], as well as ℓy,ε ∈ Hα and

uy,ε ∈ Hα. Indeed, for the first statement, using the defining expressions of ℓy,ε and uy,ε evaluated

at x(m) for any m ∈ [1 :M ], one sees that ym − εm ≤ ℓy,ε(x
(m)) and uy,ε(x

(m)) ≤ ym + εm, so that,

in view of (10), one arrives at ym − εm ≤ ℓy,ε(x
(m)) ≤ uy,ε(x

(m)) ≤ ym + εm for any m ∈ [1 :M ].

This is data-consistency. For the second statement, given x, x′ ∈ X and m ∈ [1 :M ], one has(
ym − εm − dist(x, x(m))α

)
− ℓy,ε(x

′) ≤
(
ym − εm − dist(x, x(m))α

)
−
(
ym − εm − dist(x′, x(m))α

)
= −dist(x, x(m))α + dist(x′, x(m))α ≤ dist(x, x′)α,

which yields ℓy,ε(x)−ℓy,ε(x
′) ≤ dist(x, x′)α by taking the maximum overm ∈ [1 :M ]. The inequality

|ℓy,ε(x)− ℓy,ε(x
′)| ≤ dist(x, x′)α is obtained by exchanging the roles of x and x′, thus showing that

ℓy,ε ∈ Hα. This is model-consistency for ℓy,ε. The case of uy,ε is treated similarly.

Armed with the above observations, it is time to prove the prospective result that, for any z ∈ Z,

lwcey,ε(z) ≥
∥Γ(uy,ε)− Γ(ℓy,ε)∥Z

2
with equality when z = ẑy,ε =

Γ(ℓy,ε) + Γ(uy,ε)

2
.

To justify one part of this claim, given any z ∈ Z, the fact that both ℓy,ε and uy,ε are model- and

data-consistent implies that

lwcey,ε(z) ≥

{
∥Γ(uy,ε)− z∥Z
∥Γ(ℓy,ε)− z∥Z

≥ 1

2

(
∥Γ(uy,ε)− z∥Z + ∥Γ(ℓy,ε)− z∥Z

)
≥ 1

2
∥Γ(uy,ε)− Γ(ℓy,ε)∥Z .

For the other part of the claim, given any f ∈ Hα satisfying y−Λxf ∈ Eε, i.e., |ym−f(x(m))| ≤ εm
for allm ∈ [1 :M ], the inequalities (10) and the monotonicity (9) of Γ yield Γ(ℓy,ε) ≤ Γ(f) ≤ Γ(uy,ε),

i.e.,

−Γ(uy,ε)− Γ(ℓy,ε)

2
≤ Γ(f)− Γ(ℓy,ε) + Γ(uy,ε)

2
≤ Γ(uy,ε)− Γ(ℓy,ε)

2
.

From here, it follows (with the ‘absolute value’ being the one relative to the Banach lattice Z) that∣∣∣∣Γ(f)− Γ(ℓy,ε) + Γ(uy,ε)

2

∣∣∣∣ ≤ Γ(uy,ε)− Γ(ℓy,ε)

2
,

allowing to conclude, using the monotonicity (8) of the norm on Z, that∥∥∥∥Γ(f)− Γ(ℓy,ε) + Γ(uy,ε)

2

∥∥∥∥
Z

≤ ∥Γ(uy,ε)− Γ(ℓy,ε)∥Z
2

.

Taking the supremum over f shows that lwcey,ε(ẑy,ε) ≤ ∥Γ(uy,ε)−Γ(ℓy,ε)∥Z/2, thus justifying the

other part of the claim. The proof is now complete.

The elements ẑy,ε ∈ Z and r̂y,ε := lwcey,ε(ẑy,ε) ∈ R+ are called Chebyshev center and radius,

respectively, for the set {Γ(f) : f ∈ Hα, y −Λxf ∈ Eε}, as they are solutions to

minimize
z,r

r subject to ∥Γ(f)− z∥Z ≤ r whenever f ∈ Hα and y −Λxf ∈ Eε.
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In other words, they are center and radius of a smallest Z-ball containing this set. Using the

notation f̂y,ε for the Chebyshev center in the special case Γ = I, Theorem 1 reveals in particular

that, if the quantity of interest Γ is linear, then ẑy,ε = Γ(f̂y,ε), i.e., a locally optimal estimation

of Γ(f) can be obtained by construction a full approximant and plugging it into Γ. This fortuity

does not hold anymore for nonlinear quantities of interest, say for Γ = max. Indeed, the plug-in

estimate max[f̂y,ε] = max[(ℓy,ε+uy,ε)/2] is generally smaller than ẑy,ε = (max[ℓy,ε]+max[uy,ε])/2,

as confirmed from Figure 1 below.
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(a) Full recovery of f
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(b) Estimation of max [f ]

Figure 1: An example of a univariate Lipschitz function f (solid blue curve) acquired via inexact

point values (black circles). The left panel displays the lower function ℓy,ε and the upper function

uy,ε from (5)-(6) (dotted curves), as well as the locally optimal estimation of f from Theorem 1

(dashed red curve). The right panel shows, as horizontal lines, the locally optimal estimation

of max[f ] from Theorem 1 (dashed red line) and the globally optimal estimation of max[f ] from

Theorem 4 (dash-dotted green line).

The Chebyshev center ẑy,ε is not supplied as explicitly as ideally desired, even for Γ(f) = max[f ].

For the specific case of univariate (X = [−1, 1]) Lipschitz (α = 1) functions acquired via exact

point evaluations (εm = 0), it is actually possible to be completely explicit.

Proposition 2. For functions f : [−1, 1] → R satisfying the condition |f(x)− f(x′)| ≤ |x− x′| for
all x, x′ ∈ [−1, 1] and observed via y1 = f(x(1)), ..., yM = f(x(M)) at x(1) < · · · < x(M) ∈ (−1, 1),

the locally optimal estimation of max[f ] is expressed as

ẑy,0 =
1

2

[
max

m∈[1 :M ]

(
ym

)
+ max

m∈[0 :M ]

(x(m+1) − x(m) + ym+1 + ym
2

)]
,

having set x(0) = −1, y0 = 0, x(M+1) = 1, and yM+1 = 0.

Proof. Based on Theorem 1, one needs to untangle max[ℓy,0] and max[uy,0]. The former can be
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dealt with in full generality. Indeed, in view of ℓy,0(x) = maxm
(
ym − dist(x, x(m))α

)
, one observes

on the one hand that ℓy,0(x) ≤ maxm
(
ym

)
for all x ∈ X and on the other hand that ℓy,0(x

(m)) ≥ ym
for all m ∈ [1 :M ]. These two facts combine to show that

max[ℓy,0] = max
m

(
ym

)
.

It remains to determine max[uy,0] explicitly in the specific univariate setting of the proposition.

Precisely, one shall show that

(11) max[uy,0] = max
m∈[0 :M ]

(x(m+1) − x(m) + ym+1 + ym
2

)
.

To this end, one considers the Voronoi-type cells Vy,1, . . . , Vy,M defined for m ∈ [1 :M ] by

Vy,m :=
{
x ∈ [−1, 1] : ym + |x− x(m)| ≤ yn + |x− x(n)| for all n ∈ [1 :M ]

}
,

so that

(12) max[uy,0] = max
x∈[−1,1]

min
m∈[1 :M ]

(
ym + |x− x(m)|

)
= max

m∈[1 :M ]
max

x∈Vy,m

(
ym + |x− x(m)|

)
.

At a fixed m ∈ [1 :M ], introducing Vy,m,n := {x ∈ [−1, 1] : |x − x(m)| − |x − x(n)| ≤ yn − ym}
for each n ∈ [1 :M ], one has Vy,m = ∩n̸=mVy,m,n. For n < m, since x 7→ |x − x(m)| − |x − x(n)|
is a ramp function joining |x(n) − x(m)| on the left of x(n) to −|x(n) − x(m)| on the right of x(m)

and since |yn − ym| ≤ |x(n) − x(m)| by the Lipschitz condition, a point x ∈ [−1, 1] belongs to

Vy,m,n if and only if x ≥ α(m,n), where α(m,n) ∈ [x(n), x(m)] is implicitly defined by the equation

|α(m,n)−x(m)|−|α(m,n)−x(n)| = yn−ym, or explicitly given by α(m,n) = (x(m)+x(n)+ym−yn)/2. For

n > m, one also obtains that a point x ∈ [−1, 1] belongs to Vy,m,n if and only if x ≤ β(m,n), where

β(m,n) ∈ [x(m), x(n)] is implicitly defined by the equation |β(m,n)−x(m)|− |β(m,n)−x(n)| = yn− ym,

or explicitly given by β(m,n) = (x(m) + x(n) − ym + yn)/2. As a result, for m ∈ [2 : M − 1], one

derives that

Vy,m =
( ⋂

n<m

[α(m,n), 1]
)⋂( ⋂

n>m

[−1, β(m,n)]
)
=

[
max
n<m

α(m,n), 1
]⋂[

− 1,min
n>m

β(m,n)
]

= [α(m,m−1), β(m,m+1)],

where one used the easily verifiable facts that α(m,n) ≤ α(m,m−1) for n < m and β(m,n) ≥ β(m,m+1)

for n > m. Now, noticing that β(m,m+1) coincides with α(m+1,m) with equal value

ξ(m) :=
x(m) + x(m+1) − ym + ym+1

2
, m ∈ [1 :M − 1],

one deduces that the Voronoi-type cells reduce to

Vy,m = [ξ(m−1), ξ(m)] for m ∈ [2 : M − 1].
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This remains valid for m = 1 if one sets ξ(0) = −1 and for m = M if one sets ξ(M) = 1—for

instance, Vy,M = ∩n<M [α(M,n), 1] = [α(M,M−1), 1] = [ξ(M−1), 1]. It follows that, for any m ∈ [1 :M ],

max
x∈Vy,m

(
ym + |x− x(m)|

)
= max{ym + x(m) − ξ(m−1), ym + ξ(m) − x(m)}

= max
{x(m) − x(m−1) + ym + ym−1

2
,
x(m+1) − x(m) + ym+1 + ym

2

}
,

where the boundary cases m = 1 and m = M require some special attention. Substituting the

latter into (12) and eliminating the repetitions leads to the expression announced in (11).

3 Globally Optimal Solutions

In this section, one still aims at producing a recovery map ∆ : Rm → Z which is worst-case

optimal for the estimation of a quantity of interest Γ(f) ∈ Z, but the optimality here refers

to the global sense as described in (4). As mentioned earlier, the locally optimal recovery map

∆loc : y ∈ Rm 7→ ẑy,ε ∈ Z from Theorem 1 is already automatically globally optimal. Nevertheless,

one may be interested in other maps ∆ : Rm → Z minimizing gwceε(∆), one reason being that they

could be easier to construct and manipulate, e.g. they could be linear in selected instances where

the quantity of interest Γ is itself linear. Contrary to Section 2, the cases of linear and nonlinear Γ

can seemingly not be treated in one swift stroke, so they are separated from now on.

3.1 The case of linear quantities of interest

In the result below, the generic function 1V denotes the indicator function of a set V , meaning that

1V (x) = 1 if x ∈ V and 1V (x) = 0 if x ̸∈ V , while the sets Vε,1, . . . , Vε,M ⊆ X are the Voronoi-type

cells defined by

Vε,m :=
{
x ∈ X : εm + dist(x, x(m))α ≤ εn + dist(x, x(n))α for all n ∈ [1 :M ]

}
.

Theorem 3. For the recovery of a monotone linear quantity of interest Γ from B(X ) into a Banach

lattice Z, given the datasites x(1), . . . , x(M) ∈ X and the model set (2), the minimal global worst-

case error is

inf
∆:RM→Z

gwceε(∆) = ∥Γ(u0,ε)∥Z , where u0,ε(x) = min
m∈[1 :M ]

(
εm + dist(x, x(m))α

)
.

Furthermore, the infimum is achieved for the recovery map Γ ◦∆glo : RM → Z, where

∆glo : y ∈ RM 7→
M∑

m=1

ym1Vε,m ∈ B(X ).
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Proof. For the first part of the proof, i.e., the fact that gwceε(∆) ≥ ∥Γ(u0,ε)∥Z for any ∆ : Rm → Z,

one relies of the aforementioned identity gwceε(∆) = sup{lwcey,ε(∆(y)) : y ∈ Λx(Hα) + Eε}. One

immediately derives that

gwceε(∆) ≥ lwce0,ε(∆(y)) ≥ r̂0,ε =
∥Γ(u0,ε)− Γ(ℓ0,ε)∥Z

2
= ∥Γ(u0,ε)∥Z ,

where the last equality used the fact (seen from (5)–(6)) that ℓ0,ε = −u0,ε and the linearity of Γ.

For the second part of the proof, it is enough to show that gwceε(Γ ◦∆glo) ≤ ∥Γ(u0,ε)∥Z . To this

end, let f ∈ Hα, e ∈ Eε, and let the shorthand y := Λxf + e be employed below. Then, for any

x ∈ X , select n ∈ [1 :M ] such that x ∈ Vε,n and observe that

|f(x)−∆glo(y)(x)| = |f(x)−
M∑

m=1

ym1Vε,m(x)| = |f(x)− yn| = |f(x)− (f(x(n)) + en)|

≤ |en|+ |f(x)− f(x(n))| ≤ εn + dist(x, x(n))α = u0,ε(x).

This reads −u0,ε ≤ f−∆glo(y) ≤ u0,ε and, thanks the monotonicity (9) and linearity of Γ, it follows

that −Γ(u0,ε) ≤ Γ(f)−(Γ◦∆glo)(y) ≤ Γ(u0,ε), i.e., |Γ(f)−(Γ◦∆glo)(y)| ≤ Γ(u0,ε). Finally, thanks

to the monotonicity (8) of the norm, one concludes that ∥Γ(f) − (Γ ◦ ∆glo)(y)∥Z ≤ ∥Γ(u0,ε)∥Z .
Taking the maximum over f and e finishes the proof.

A few comments are appropriate to conclude on the subject of monotone linear quantities of interest:

• the two optimal recovery maps that were exposed, the locally—hence globally—optimal one

from Theorem 1 and the globally optimal one from Theorem 3, both take the form Γ ◦ ∆,

with ∆ given by either

∆loc(y) =
ℓy,ε + uy,ε

2
or ∆glo(y) =

M∑
m=1

ym1Vε,m ,

i.e., they are obtained by applying the quantity of interest after producing a full estimation;

• when all the εm’s are equal to a common ε, both ∆loc and ∆glo are independent of this ε (but

of course the minimal worst-case errors do depend on ε);

• the local estimate ∆loc(y) is data- and model-consistent, while the global estimate ∆glo(y) is

not model-consistent, as it is discontinuous, hence not Hölder;

• the global estimate ∆glo(y) depends linearly on y ∈ Rm, while local estimate ∆loc(y) does

not—this does not necessarily mean, however, that the former is simpler than the latter, as

producing ∆loc(y) via the defining expressions (5)–(6) of ℓy,ε and uy,ε can be viewed as easier

than producing ∆glo(y), if done through the construction all the Voronoi-type cells;

• the local estimate ∆loc(y) seems more convenient for streaming data than the global estimate

∆glo(y), as the former is easy to update (via the defining expressions (5)–(6) of ℓy,ε and uy,ε)
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when a new (x(M+1), yM+1) is added, while this addition potentially affects a large number

of Voronoi-type cells for the latter. But if one is primarily interested in prediction at a fixed

x ∈ X , then the global estimate is also straightforward to update, as it essentially returns the

value ym at the datasite x(m) closest to x, so one only needs to check if x is closer to x(M+1)

than to the previous closest datasite.

3.2 The case of the maximum

Turning to the estimation of nonlinear quantities of interest, as an encompassing result seems out

of reach, one concentrates specifically on the maximum, i.e., Γ(f) = max[f ]. To start, consider the

situation of exact observations, i.e., ym = f(x(m)) for all m ∈ [1 :M ]. To estimate max[f ], it might

seem natural to simply output maxm(ym), but this is always an underestimation. One probably

needs to add a slight correction. To guess what this correction could be, look at the local optimality

result instantiated at y = 0, which suggests (max[ℓ0,0] + max[u0,0])/2. Since max[ℓ0,0] = 0 and

u0,0 coincides with the function U defined in (7), this correction simplifies to max[U ]/2. It turns

to be the right guess, remaining valid when the observation error bounds εm are all equal to a

common ε. In this case, a globally optimal recovery map can be chosen independently of this ε, as

formally stated below.

Theorem 4. For the recovery of the quantity of interest f ∈ B(X ) 7→ max[f ] ∈ R, given the

data (1) with εm = ε for all m ∈ [1 :M ] and the model set (2), the minimal global worst-case error

is

inf
∆:RM→R

gwceε(∆) =
1

2
max[U ] + ε, where U(x) = min

m∈[1 :M ]

(
dist(x, x(m))α

)
.

Furthermore, the infimum is achieved for the recovery map

∆glo : y ∈ RM 7→ max
m∈[1 :M ]

(
ym

)
+

1

2
max[U ] ∈ R.

This result is in fact obtained by setting εm = ε in the more general theorem appearing next.

Before that, one takes notice that the above global recovery map ∆glo is different, though close,

to the local recovery map ∆loc from Theorem 1. Indeed, imposing εm = ε for all m ∈ [1 :M ], one

easily arrives at the expressions

∆glo(y) = max
m∈[1 :M ]

(
ym

)
+

1

2
max

[
min

m∈[1 :M ]

(
dist(·, x(m))α

)]
,

∆loc(y) =
1

2
max

m∈[1 :M ]

(
ym

)
+

1

2
max

[
min

m∈[1 :M ]

(
ym + dist(·, x(m))α

)]
,

which could even be made more explicit in the univariate setting by invoking Proposition 2. These

expressions incidentally reveal that the global estimate is never smaller than the local estimate,

i.e., that ∆glo(y) ≥ ∆loc(y), as illustrated in Figure 1(b).

10
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Theorem 5. For the recovery of the quantity of interest f ∈ B(X ) 7→ max[f ] ∈ R, given the

data (1) and the model set (2), the minimal global worst-case error is bounded below as

inf
∆:RM→R

gwceε(∆) ≥ 1

2
max[u0,ε] +

1

2
min

m∈[1 :M ]

(
εm

)
,

while the recovery map ∆̃ : y ∈ RM 7→ maxm∈[1 :M ]

(
ym

)
+

1

2
max[u0,ε] −

1

2
maxm∈[1 :M ]

(
εm

)
∈ R

has global worst-case error bounded above as

gwceε(∆̃) ≤ 1

2
max[u0,ε] +

1

2
max

m∈[1 :M ]

(
εm

)
.

Proof. For the lower bound, one points out that ℓ0,ε ∈ Hα and u0,ε ∈ Hα based on an argument

similar to one in the proof of Theorem 1. One also sees from their defining expressions that

−εm ≤ ℓ0,ε(x
(m)) ≤ 0 ≤ u0,ε(x

(m)) ≤ εm for all m ∈ [1 :M ], and hence ℓ0,ε(x
(m))+em = 0 for some

e ∈ Eε and u0,ε(x
(m)) + em = 0 for some e ∈ Eε. Therefore, one derives that, for any ∆ : Rm → R,

gwceε(∆) ≥

{
|max[ℓ0,ε] −∆(0)|
|max[u0,ε]−∆(0)|

≥ 1

2

(
|max[u0,ε]−∆(0)|+ |max[ℓ0,ε]−∆(0)|

)
≥ 1

2

(
max[u0,ε]−max[ℓ0,ε]

)
.

The result follows from the observation that max[ℓ0,ε] = maxm
(
− εm

)
= −minm

(
εm

)
.

For the upper bound on gwceε(∆̃), one needs to establish that, given f ∈ Hα, e ∈ Eε, and writing

y = Λxf + e for short,

−1

2
max[u0,ε]−

1

2
max

m∈[1 :M ]

(
εm

)
≤ max[f ]− ∆̃(y) ≤ 1

2
max[u0,ε] +

1

2
max

m∈[1 :M ]

(
εm

)
.

Taking the expression of ∆̃(y) into account in these prospective inequalities, one notices that the

leftmost one reduces to max[f ] ≥ maxm
(
ym

)
− maxm

(
εm

)
, while the rightmost one reduces to

max[f ] ≤ maxm
(
ym

)
+ max[u0,ε]. The facts that max[f ] ≥ maxm

(
f(x(m))

)
= maxm

(
ym − em

)
and f(x) ≤ uy,ε(x) = minm

(
ym + εm + dist(x, x(m))α

)
≤ maxm

(
ym

)
+ u0,ε(x) for all x ∈ X yield

the former and the latter, respectively.

Remark. Theorem 4 could be extended in a further direction, incorporating jittered observations,

so as to receive data of the form ym = f(x(m) + ξ(m)) + em with |em| ≤ ε and ∥ξ(m)∥ ≤ δ. It is

hereby assumed that this norm is the one generating the metric dist and the domain X ⊆ Rd as its

unit ball. Defining a new notion of global error including the worst case over ξ(1), . . . , ξ(M) ∈ X ,

one would obtain gwceε,δ(∆) ≥ max[U ]/2 + ε for any ∆ : RM → R, simply because this new

notion gwceε,δ of global worst-case error is larger than the previous notion gwceε. Moreover, for the

recovery map ∆glo from Theorem 4, one can obtain gwceε,δ(∆
glo) ≤ max[U ]/2 + ε + δ by making

the necessary adjustments in the second part of the proof of Theorem 5. Note that it makes sense
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to assume that the balls B(x(m), δ) do not intersect, otherwise a jittered observation ym could also

come from another datasite x(n) with n ̸= m. Consequently, if µ is the volumetric measure, then

Mδdµ(B(0, 1)) =
M∑

m=1

µ(B(x(m), δ)) = µ
( M⋃

m=1

B(x(m), δ)
)
≤ µ(B(0, 1 + δ)) ≤ (1 + δ)dµ(B(0, 1)),

yielding M1/d ≤ 1 + 1/δ ≤ 2/δ, i.e., δ ≤ 2/M1/d. Since the next section will establish that

max[U ] ≥ 1/(2Mα/d) ≥ 1/(2M1/d), one derives that δ ≤ 4max[U ], which in turn implies that

gwceε,δ(∆
glo) ≤ max[U ]/2 + ε+ 4max[U ] ≤ 9 (max[U ]/2 + ε) ≤ 9 gwceε,δ(∆) for any ∆ : RM → R.

In other words, one can assert that ∆glo is near optimal with a factor 9.

4 Estimations of the Minimal Global Worst-Case Errors

Throughout this section, given a norm ∥ · ∥ on Rd, the domain X ⊆ Rd is chosen to be its unit ball

B(0, 1) equipped with the Lebesgue measure µ normalized so that µ(X ) = 1. The metric involved

in the Hölder model set Hα defined in (2) is also chosen to be the one subordinated to this norm,

i.e., dist(x, x′) = ∥x− x′∥. As shown in the previous section, the minimal global worst-case errors

are dictated by the function u0,ε, e.g. via its Lp-norm for the recovery of Γ(f) = f , Γ being the

identity from B(X ) to Lp(X ) (see Theorem 3), or via its L∞-norm for the recovery of max[f ] (see

Theorem 5). The goal here is to evaluate these quantities optimized over the selection of datasites

x(1), . . . , x(M). The first result applies to a general X = B(0, 1) and gives a precise two-sided

estimate valid for any p ∈ [0,∞]. It is followed by an exact expression applying to the case of the

ℓ∞-norm on Rd, so that X = [−1, 1]d.

Theorem 6. For X being the unit ball of Rd relatively to a norm ∥ · ∥ and for p ∈ [1,∞], recalling

that u0,ε(x) = minm
(
εm + ∥x− x(m)∥α

)
, one has

min
m∈[1 :M ]

(
εm

)
+

c

Mα/d
≤ inf

x(1),...,x(M)∈X
∥u0,ε∥Lp(X ) ≤ max

m∈[1 :M ]

(
εm

)
+

C

Mα/d
,

where the absolute constants c, C > 0 can be taken as c = 1/2 and C = 3.

Proof. For the lower bound, given any x(1), . . . , x(M) ∈ X , one uses ∥u0,ε∥Lp(X ) ≥ ∥u0,ε∥L1(X ) and

u0,ε(x) ≥ minm(εm) + U(x) to deduce that ∥u0,ε∥Lp(X ) ≥ minm(εm) + ∥U∥L1(X ). Then, in order

to bound ∥U∥L1(X ) from below, one adapts the proof of [8], where Sukharev was interested in the

optimal recovery of the integral of a Lipschitz function on [0, 1]d, but otherwise the argument is

12
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essentially the same. Namely, for τ > 0 to be chosen later, one writes

∥U∥L1(X ) =

∫
X
U(x)dµ(x) =

∫ ∞

0
µ{x ∈ X : U(x) > t}dt ≥

∫ τ

0

[
1− µ{x ∈ X : U(x) ≤ t}

]
dt

=

∫ τ

0

[
1− µ{x ∈ X : ∥x− x(m)∥α ≤ t for some m ∈ [1 :M ]}

]
dt

≥
∫ τ

0

[
1−

M∑
m=1

µ{x ∈ X : ∥x− x(m)∥ ≤ t1/α}
]
dt ≥ τ −

M∑
m=1

∫ τ

0
(t1/α)ddt

= τ − M

d/α+ 1
τd/α+1.

This lower bound is optimized when 1−Mτd/α = 0, i.e., τ = M−α/d, yielding

∥U∥L1(X ) ≥ M−α/d − M

d/α+ 1

(
M−α/d

)d/α+1
=

(
1− 1

d/α+ 1

)
M−α/d =

d

d+ α
M−α/d.

The announced inequality now simply follows from d/(d+ α) ≥ 1/2.

For the upper bound, one uses ∥u0,ε∥Lp(X ) ≤ ∥u0,ε∥L∞(X ) and u0,ε(x) ≤ maxm(εm)+U(x) to deduce

that ∥u0,ε∥Lp(X ) ≤ maxm(εm) + ∥U∥L∞(X ). Then, in order to bound ∥U∥L∞(X ) from above, one

relies on a folklore result about covering numbers. Namely, one can find a set {x(1), . . . , x(N)} ⊆ X
of N ≤ (1+2/θ)d points such that, for any x ∈ X , there exists n ∈ [1 :N ] such that ∥x−x(n)∥ ≤ θ.

Selecting θ = 3/M1/d, one has N ≤ (3/θ)d = M , so one can complete the above set to form a

θ-net {x(1), . . . , x(M)} ⊆ X consisting of M points. Using these datasites, it is now clear that

∥U∥L∞(X ) = maxxminm ∥x− x(m)∥α ≤ (3/M1/d)α ≤ 3/Mα/d.

The result of Theorem 6 can be refined for the standard domain X = [−1, 1]d, as uncovered below.

Theorem 7. If Rd is equipped with the ℓ∞-norm, so that X = [−1, 1]d and dist(x, x′) = ∥x−x′∥ℓd∞ ,

and if all the εm’s are equal to a common ε, then, for any p ∈ [1,∞),

inf
x(1),...,x(M)∈X

∥u0,ε∥pLp(X ) ≥
(
ε+

1

Mα/d

)p

−M

∫ (ε+1/Mα/d)p

εp
(t1/p − ε)d/αdt,

with equality being achieved when M1/d is an integer. Furthermore, if ε = 0, then

inf
x(1),...,x(M)∈X

∥u0,ε∥Lp(X ) ≥
(

d

d+ αp

)1/p 1

Mα/d
with equality when M1/d is an integer.

Proof. For arbitrary points x(1), . . . , x(M) ∈ X , let V1, . . . , VM denote the (genuine) Voronoi cells,
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i.e., Vm = {x ∈ X : ∥x− x(m)∥ℓd∞ ≤ ∥x− x(n)∥ℓd∞ for all n ∈ [1 :M ]}. One starts by writing

∥u0,ε∥pLp(X ) =

∫
X

min
m∈[1 :M ]

(
ε+ ∥x− x(m)∥αℓd∞

)p
dµ(x) =

M∑
m=1

∫
Vm

(
ε+ ∥x− x(m)∥αℓd∞

)p
dµ(x)

=

M∑
m=1

∫ ∞

0
µ{x ∈ Vm :

(
ε+ ∥x− x(m)∥αℓd∞

)p
> t}dt

=
M∑

m=1

∫ ∞

0
µ{x ∈ Vm : ∥x− x(m)∥ℓd∞ > (t1/p − ε)1/α}dt

=
M∑

m=1

∫ ∞

0
µ(Vm \B(x(m), (t1/p − ε)1/α))dt.(13)

For τ > 0 to be chosen later, one continues with

∥u0,ε∥pLp(X ) ≥
M∑

m=1

∫ τ

0
µ(Vm \B(x(m), (t1/p − ε)1/α))dt

≥
M∑

m=1

∫ τ

0

(
µ(Vm)− µ(B(x(m), (t1/p − ε)1/α))

)
dt

= τ −M

∫ τ

εp
(t1/p − ε)d/αdt.

Selecting the optimal τ = (ε+M−α/d)p gives the announced lower bound.

Assuming now that M = Nd for some integer N ∈ N, one aims at showing that the lower bound can

be achieved. To this end, one partitions X = [−1, 1]d into a regular grid made of Nd hypercubes of

side 2/N and one picks x(1), . . . , x(M) as their centers. Thus, the hypercubes are the Voronoi cells

associated with x(1), . . . , x(M), i.e., B(x(m), 1/N) = Vm. Coming back to (13) while remarking that

µ(Vm \B(x(m), (t1/p − ε)1/α)) =


N−d, if t ≤ εp,

N−d − (t1/p − ε)d/α, if εp < t ≤ (ε+N−α)p,

0, if t > (ε+N−α)p,

one obtains, for this choice of x(1), . . . , x(M),

∥u0,ε∥pLp(X ) =

M∑
m=1

(∫ εp

0

1

Nd
dt+

∫ (ε+N−α)p

εp

( 1

Nd
− (t1/p − ε)d/α

)
dt
)

= (ε+N−α)p −M

∫ (ε+N−α)p

εp
(t1/p − ε)d/αdt.

Substituting N = M1/d shows that the latter indeed equals the previous lower bound.
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With p = 1 and α = 1, the infimum from Theorem 7 becomes ε + (d/(d + 1))M−1/d. Similarly,

Theorem 6 also demonstrated that in general the minimal global-worst case error over all possible

recovery procedures and datasites is composed of two terms: ε, the observation accuracy, and

M−1/d, where M is the number of observations. The term M−1/d is bad news: even for perfectly

accurate observations, an error of order η < 1 can only be achieved with a numberM of observations

of order η−d—this is the curse of dimensionality, as formalized in Information-Based Complexity.

But the high dimensionality seems to come with a silver lining, too: at a fixed M , since the

error contains the term M−1/d anyway, it is pointless to observe with accuracy ε better than the

threshold M−1/d, which is less stringent as the dimension d grows.
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