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In this additional material, we discuss, not too rigorously, how our optimization procedure should

be refined in order to deal with richer computational problems and thus open the way for a multi-

variate version of Basc [3]. Our first two points advocate the use of trigonometric moments instead

of monomial moments, the latter being the core of GlobtiPoly 3. Our main premonition is that

the resulting positive semidefinite matrices will inherit a Toeplitz structure instead of a Hankel

structure, which seems to be much better suited numerically. The third and final point outlines a

way to solve the best approximation problem in L1-norm.

The use of trigonometric moments. Besides the aforementioned numerical stability, enabling

one to attack problems of larger size, other advantages of trigonometric moments include fewer

localization conditions (since measures are automatically restricted to the hypercube), the fact

that polynomials are better represented via tensor products of univariate Chebyshev polynomials

(at least in Chebfun, Chebfun2, and Chebfun3, [1, 8, 6]), and the fact that the semidefinite programs

at stake could naturally be solved via the software CVX [4] instead of GlobtiPoly 3 [5].

We outline below a general strategy to approximate a monomial m(k1,...,kd) with k1+ · · ·+kd = n by

elements from Pd
n−1 relatively to the L∞-norm on a basic semialgebraic set Ω ⊆ [−1, 1]d. Observe

first that the question is equivalent to the approximation of f(x) = Tk1(x1) · · ·Tkd(xd). We start

again from the dual formulation

EPd
n−1

(f,Ω) = max
λ∈C(Ω)∗

λ(f) subject to λ|Pd
n−1

= 0 and ∥λ∥C(Ω)∗ = 1.

We then identify λ ∈ C(Ω)∗ with a measure ν on [−1, 1]d supported on Ω, which itself is identified

with a measure µ on [0, π]d supported on some Ω̃ via

λ(h) =

∫
[−1,1]d

h(x1, . . . , xd)dν(x1, . . . , xd) =

∫
[0,π]d

h(cos(θ1), . . . , cos(θd))dµ(θ1, . . . , θd), h ∈ C(Ω).
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Likewise, the nonnegative measures ν± in the Jordan decomposition ν = ν+ − ν− are identified

with nonnegative measures µ± in the Jordan decomposition µ = µ+ − µ−. Notice that λ(f) is the

kth trigonometric moment of µ, since

λ(f) =

∫
[−1,1]d

Tk1(x1) · · ·Tkd(xd)dν(x1, . . . , xd) =

∫
[0,π]d

cos(k1θ1) · · · cos(kdθd)dµ(θ1, . . . , θd) =: yk.

We use a similar notation for the trigonometric moments of µ±, namely

y±ℓ :=

∫
[0,π]d

cos(ℓ1θ1) · · · cos(ℓdθd)dµ±(θ1, . . . , θd).

In this way, the constraint ∥λ∥C(Ω)∗ = 1 reads y+0 + y−0 = 1, since

∥λ∥C(Ω)∗ =

∫
[−1,1]d

d|ν| =
∫
[0,π]d

d|µ| =
∫
[0,π]d

d(µ+ + µ−) = y+0 + y−0 ,

while the constraint λ|Pd
n−1

= 0 reads y+ℓ − y−ℓ = 0 whenever |ℓ| < n, since

λ(Tℓ1(x1) · · ·Tℓd(xd)) =

∫
[0,π]d

cos(ℓ1θ1) · · · cos(ℓdθd)dµ(θ1, . . . , θk) = yℓ = y+ℓ − y−ℓ .

All in all, replacing the measure µ by its sequence of moments y ∈ RNd
, we arrive at

EPd
n−1

(f) = sup
y±∈RNd

(y+k − y−k ) s.to y+0 + y−0 = 1, y+ℓ − y−ℓ = 0 whenever |ℓ| < n,

and y± represent nonnegative measures on [0, π]d supported on Ω̃.

The latter constraint has two components (the second one being unnecessary if Ω = [−1, 1]d):

1. by invoking the discrete multilinear trigonometric moment problem, the fact that y± represent

nonnegative measures on [0, π]d translates into the positive semidefiniteness of the moment

matrices M(y±) ∈ RNd×Nd
with entries

M(y±)ℓ,ℓ′ = moment|ℓ−ℓ′|(µ
±) = y±|ℓ−ℓ′|, ℓ, ℓ′ ∈ Nd.

2. the fact that y± represent measures that are supported on Ω̃ translates, say in the exemplary

case of the shifted simplex

Ω = {(x1, . . . , xd) ∈ [−1, 1]d : x1 + x2 + · · ·+ xd ≤ 2− d},

into the fact that (2− d− x1 − · · · − xd)ν
±(x1, . . . , xd) are nonnegative measures on [−1, 1]d,

or equivalently that

µ̃±(θ1, . . . , θd) := (2− d− cos(θ1)− · · · − cos(θd))µ
±(θ1, . . . , θd)
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are nonnegative measures on [0, π]d. This is equivalent to the positive semidefiniteness of the

matrices N(y±) ∈ RNd×Rd
with entries

N(y±)ℓ,ℓ′ = moment|ℓ−ℓ′|(µ̃
±)

=

∫
[0,π]d

cos((ℓ1 − ℓ′1)θ1) · · · cos((ℓd − ℓ′d)θd)(2− d− cos(θ1)− · · · − cos(θd))dµ
±(θ1, . . . , θd)

= (2− d)moment|ℓ−ℓ′|(µ
±)

−
d∑

i=1

∫
[0,π]d

cos((ℓ1 − ℓ′1)θ1) · · · cos(θi) cos((ℓi − ℓ′i)θi) · · · cos((ℓd − ℓ′d)θd)dµ
±(θ1, . . . , θd).

In view of the identity cos(a) cos(b) = (cos(a+ b) + cos(a− b))/2, we derive

N(y±)ℓ,ℓ′ = (2− d) y±|ℓ−ℓ′|

−
d∑

i=1

∫
[0,π]d

cos((ℓ1 − ℓ′1)θ1) · · ·
cos((ℓi − ℓ′i + 1)θi)

2
· · · cos((ℓd − ℓ′d)θd)dµ

±(θ1, . . . , θd)

−
d∑

i=1

∫
[0,π]d

cos((ℓ1 − ℓ′1)θ1) · · ·
cos((ℓi − ℓ′i − 1)θi)

2
· · · cos((ℓd − ℓ′d)θd)dµ

±(θ1, . . . , θd).

Altogether, this reads

N(y±)ℓ,ℓ′ = (2− d)y±|ℓ−ℓ′| −
1

2

d∑
i=1

(
y±|ℓ−ℓ′+δi| + y±|ℓ−ℓ′−δi|

)
.

In summary, the best approximation error EPd
n−1

(f) can be computed by solving the semidefinite

program (note that M(y±), N(y±) depend linearly on y±):

maximize
y±∈RNd

(y+n − y−n ) s.to y+0 + y−0 = 1, y+ℓ − y−ℓ = 0 whenever |ℓ| < n,

and M(y±) ⪰ 0, N(y±) ⪰ 0.

In practice, of course, the infinite vectors y± ∈ RNd
are truncated to finite vectors y± ∈ RNd

. This

provides lower bounds for EPd
n−1

(f), but it seems that these lower bounds agree with the genuine

value even when the parameter N is moderate.

Atom extraction from Chebyshev moments. One of the advantages of GlobtiPoly 3 is that, if

a measure is atomic, then it can extract the atoms from finitely many monomial moments. Actually,

this is also valid for Chebyshev moments. The following procedure reveals how to do so, albeit in

the univariate setting. It is an adaptation of Prony’s method. Suppose that an atomic measure

ν =
s∑

i=1

ciδx(i) , x(1), . . . , x(s) ∈ [−1, 1], c1, . . . , cs ∈ R,
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is available through its first 2s Chebyshev moments y0, . . . , y2s−1, where

yℓ =

∫ 1

−1
Tℓ(x)dν(x) =

s∑
i=1

ciTℓ(x
(i)).

The goal is to deduce the unknowns x(1), . . . , x(s) and c1, . . . , cs from these moments. Consider the

degree-s polynomial p vanishing exactly at the x(i)’s and expand it in the Chebyshev basis as

p(x) := 2s−1(x− x(1)) · · · (x− x(s)) =
s∑

j=0

γjTj(x), where γs = 1.

For any ℓ = 0, 1, . . . , s− 1, observe that

0 =
s∑

i=1

ciTℓ(x
(i))p(x(i)) =

s∑
i=1

ciTℓ(x
(i))

s∑
j=0

γjTj(x
(i)) =

s∑
j=0

γj

s∑
i=1

ciTℓ(x
(i))Tj(x

(i))

=

s∑
j=0

γj

s∑
i=1

ci
Tℓ+j(x

(i)) + T|ℓ−j|(x
(i))

2
=

s∑
j=0

γj
yℓ+j + y|ℓ−j|

2
.

Using γs = 1, this identity rearranges into s linear equations in the s unknowns γ0, . . . , γs−1, namely

(note that the coefficients of the system are known due to the availability of y0, . . . , y2s−1)

s−1∑
j=0

(yℓ+j + y|ℓ−j|)γj = −(yℓ+s + ys−ℓ), ℓ = 0, 1, . . . , s− 1.

Solving this linear system provides the values of γ0, . . . , γs−1. Next, the unknown x(1), . . . , x(s) are

obtained as the roots of the polynomial
∑s

j=0 γjTj(x), computed as the eigenvalues of the colleague

matrix C expressed (taking γs = 1 into account) as

C =
1

2



0 2 0 · · · 0

1 0 1
. . .

...

0 1 0
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 0


− 1

2



0 · · · · · · 0
...

...
...

...

0 · · · · · · 0

γ0 γ1 γs−2 γs−1


.

Now that x(1), . . . , x(s) are known, the values of c1, . . . , cs are deduced from the defining equations

of y0, . . . , ys−1, interpreted as s linear equations with unknowns c1, . . . , cs.

We mention in passing that, in the multivariate setting, there is an analog of the relation between the

roots of a polynomial expressed in the monomial basis and the eigenvalues of the companion matrix:

this is Stickelberger eigenvalue theorem, see e.g. [7, Theorem 2.9]. For polynomials expressed in

the Chebyshev basis and the colleague matrix, we are not aware of what the multivariate analog is.
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Dealing with the L1-norm. We conclude by outlining a procedure to compute the error of best

approximation from Pd
n−1 to a monomial mk—or any polynomial f ∈ Pd

N with N ≥ n—relative to

the L1-norm on a basic semialgebraic set Ω. In other words, we want to solve the problem

minimize
p∈Pd

n−1

∥f − p∥L1(Ω), where ∥f − p∥L1(Ω) =

∫
Ω
|(f − p)(x)|dx.

Fixing p ∈ Pd
n−1 for now, with the Jordan decomposition of the signed measure (f − p)(x)dx in the

back of our mind, we observe that

∥f − p∥L1(Ω) = inf
µ±

∫
d(µ+ + µ−)(x) subject to d(µ+ − µ−)(x) = (f − p)(x)dx,

with infimum taken over nonnegative Borel measures µ+ and µ− supported on Ω. Then, viewing the

measures µ± in terms of their sequences y± ∈ RNd
of moments—monomial or trigonometric—we

notice that the objective function is simply y+0 +y−0 while the constraint reads y+ℓ −y−ℓ = zℓ(p), ℓ ∈
Nd, for some sequence z(p) ∈ RNd

depending affinely on p. Thus, adding moment and localization

constraints stating that some infinite matrices M(y±) and N(y±) depending linearly on y± are

positive semidefinite, we arrive at

∥f − p∥L1(Ω) = inf
y±∈RNd

y+0 + y−0 subject to y+ − y− = z(p), M(y±) ⪰ 0, N(y±) ⪰ 0.

At this point, unfixing p ∈ Pd
n−1, we can see that the above expression can further be minimized

over this approximating polynomial, leading to an infinite-dimensional semidefinite program with

variables p ∈ Pd
n−1 and y± ∈ RNd

. In practice, of course, we truncate the latter to obtain a finite-

dimensional semidefinite program whose minimizers can be shown to converge to the sought-after

minimizer when the truncation parameter grows. We even expect the availability of error esimates,

albeit a posteriori ones, similar to the ones derived carefully in [2] for a univariate setting.
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