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Abstract

This article is concerned with an extension of univariate Chebyshev polynomials of the first

kind to the multivariate setting, where one chases best approximants to specific monomials

by polynomials of lower degree relative to the uniform norm. Exploiting the Moment-SOS

hierarchy, we devise a versatile semidefinite-programming-based procedure to compute such best

approximants, as well as associated signatures. Applying this procedure in three variables leads

to the values of best approximation errors for all mononials up to degree six on the euclidean

ball, the simplex, and the cross-polytope. Furthermore, inspired by numerical experiments, we

obtain explicit expressions for Chebyshev polynomials in two cases unresolved before, namely

for the monomial x2
1x

2
2x3 on the euclidean ball and for the monomial x2

1x2x3 on the simplex.

Key words and phrases: best approximation, Chebyshev polynomials, sum of squares, method of

moments, semidefinite programming.
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1 Introduction

For n ≥ 1, let Pn denote the space of univariate polynomials of degree less than or equal to n. The

classical nth degree Chebyshev polynomial (of the first kind) is the polynomial Tn often implicitly

defined via the relation Tn(cos θ) = cos(nθ) for all θ ∈ [−π, π]. It is characterized by a wealth of

extremal properties, including:
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• 2−n+1Tn is the monic polynomial that deviates least from zero in the uniform norm on [−1, 1],

i.e., Tn minimizes ∥p∥[−1,1] := max{|p(x)| : x ∈ [−1, 1]} over all polynomials p ∈ Pn satisfying

coeffxn(p) = 2n−1—this is how Chebyshev polynomials were first introduced in [4];

• 2−n+1Tn is the monic polynomial that deviates least from zero in the L2-norm on [−1, 1]

with respect to the inverse semicircle weight, i.e., Tn minimizes
∫ 1
−1 p(x)

2(1− x2)−1/2dx over

all polynomials p ∈ Pn satisfying coeffxn(p) = 2n−1—this relates to the orthogonality of

Chebyshev polynomials for this weight;

• Tn is the extremizer of every differentiation operator, i.e., Tn maximizes ∥p(k)∥[−1,1] over

all polynomials p ∈ Pn satisfying ∥p∥[−1,1] ≤ 1 for every k = 1, 2, . . . , n—this is Markov’s

inequality due to A. A. Markov for k = 1 and Markov’s inequality due to his younger brother

V. A. Markov for k = 2, . . . , n;

• Tn is the polynomial with the largest growth outside [−1, 1], i.e., for every t ̸∈ [−1, 1] and every

k = 0, 1, . . . , n, Tn maximizes |p(k)(t)| over all polynomials p ∈ Pn satisfying ∥p∥[−1,1] ≤ 1;

• Tn is the polynomial with largest arc-length on [−1, 1], i.e., Tn maximizes
∫ 1
−1

√
1 + p′(x)2dx

over all polynomials p ∈ Pn satisfying ∥p∥[−1,1] ≤ 1.

Each of these five properties, which are all found in the classic book [19] by Rivlin, could serve

as a rationale for a generalization of Chebyshev polynomials to the multivariate setting. The

generalization examined in this article is based on the first property. Thus, denoting by Pd
n the

space of d-variate polynomials of degree ≤ n and considering a domain Ω ⊆ Rd, we intend to tackle

the optimization program

minimize
p∈Pd

n

∥p∥Ω := max
x∈Ω

|p(x)| subject to p being monic.

Although this is a convex optimization program—the constraint is linear and the objective function

is convex—solving it is far from trivial. By introducing a slack variable c ∈ R, it is seen to be

equivalent to

(1) minimize
c∈R, p∈Pd

n

c subject to p being monic and to

{
c+ p ≥ 0 on Ω,

c− p ≥ 0 on Ω.

The added constraints are polynomial nonnegativity constraints and, as such, can conceivably be

dealt with using sum-of-squares (SOS) techniques. In fact, as clarified later, we will advantageously

use the dual facet of the Moment-SOS hierarchy [12] to address our central optimization program.

But before delving into the technicalities, let us mention that the above formulation comes with

some ambiguities about
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• the notion of multivariate degree: we will concentrate exclusively on the total degree given

by

deg

( ∑
k=(k1,...,kd)

ck1,...,kd x
k1
1 · · ·xkdd

)
= max

k:ck ̸=0
|k|, where |k| = k1 + · · ·+ kd;

• the choice of domain Ω: we will consider only the simplex S, the cross-polytope C (ℓ1-ball),

the euclidean ball B (ℓ2-ball), and the hypercube H (ℓ∞-ball), which are given by

S =
{
x ∈ Rd : x1, . . . , xd ≥ 0 and

d∑
i=1

xi ≤ 1
}
, C =

{
x ∈ Rd :

d∑
i=1

|xi| ≤ 1
}
,

B =
{
x ∈ Rd :

d∑
i=1

|xi|2 ≤ 1
}
, H =

{
x ∈ Rd : max

i=1,...,d
|xi| ≤ 1

}
;

• the meaning of ‘monic’ in the constraint: it can be interpreted as imposing that the coefficient

on a fixed nth degree monomial mk equals one while the coefficients on all other nth degree

monomials equal zero, leading to the best approximation problem

(2) minimize
p∈Pd

n−1

∥mk − p∥Ω, where mk(x) = xk11 · · ·xkdd and |k| = n,

or it could be interpreted as imposing that the coefficients on all the nth degree monomials

sum up to one, leading to the program

(3) minimize
p∈Pd

n

∥p∥Ω subject to
∑
|k|=n

coeffmk
(p) = 1.

The term Chebyshev polynomial will refer to the first interpretation. It is the subject of this

article and necessitates a computational approach. The second interpretation comes, more

classically, with explicit expressions for a large class of domains including S, C, B, and H.

This is the subject of a companion article, see [5].

Here, our contribution includes the numerical—sometimes explicit—construction of all Chebyshev

polynomials up to degree n = 6 for d = 3 variables. The whole list of errors of best approximation

is assembled in Section 4, completing a partial catalog of known results recalled in Section 2.

This section also provides a refresher on some important reductions and on the central concept of

signature. The production of novel Chebyshev polynomials exploits a semidefinite programming

procedure presented in Section 3. Arguably, this is the centerpiece of our work and we emphasize its

versatility, which would allow one to make easy adjustments for related problems, e.g. multivariate

Zolotarev’s polynomials could be constructed with only small modifications of the procedure. It is

also worth noting already at this point that the workflow is not only numerical: the experimental

Chebyshev polynomials returned by our procedure can be verified explicitly or symbolically to be

genuine Chebyshev polynomials. For instance, best approximants to the monomial m(2,2,1) relative

to the euclidean ball and to the monomial m(2,1,1) relative to the simplex are derived analytically

in Section 4. Finally, Section 5 gives an outlook on a possible augmentation of the procedure and

its deployment into further computational endeavors.
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2 Prior Knowledge

This section is exclusively concerned with (monomial-specific) multivariate Chebyshev polynomials,

i.e., with solutions to the best approximation problem (2). We start by recalling a characterization

of these solutions involving the notion of signature. Then we provide a catalog of previously derived

multivariate Chebyshev polynomials—more precisely, of the known results that we are aware of.

We point out from the outset that multivariate Chebyshev polynomials are generically not unique,

explaining our tendency to manipulate signatures preferably to polynomials themselves.

2.1 Characterization via signatures

To be most general, let us assume that Ω is a compact set and that we are trying to approximate a

continuous function f ∈ C(Ω) by elements of a finite-dimensional vector space V ⊆ C(Ω), assuming

of course that f ̸∈ V. We have in mind the case where f is a nth degree monomial and where V is

the space Pd
n−1, but the considerations of this subsection are valid beyond this specific case. The

error of best approximation and (any one of) the best approximant(s) shall be denoted by EV(f,Ω)

and by v∗, respectively, so that

(4) EV(f,Ω) = min
v∈V

∥f − v∥Ω = ∥f − v∗∥Ω.

A folklore result in Approximation Theory shows that the latter can alternatively be expressed as

a maximum, namely as

(5) EV(f,Ω) = max
λ∈C(Ω)∗

λ(f) subject to λ|V = 0 and ∥λ∥C(Ω)∗ = 1.

In optimization custom, this is viewed as a strong duality result, whose proof is informative to

sketch here. To start, the inequality that the maximum in (5) does not exceed the minimum in (4)

simply follows from the fact that, for any feasible v ∈ V and λ ∈ C(Ω)∗, one has

λ(f) = λ(f − v) ≤ ∥λ∥C(Ω)∗∥f − v∥Ω = ∥f − v∥Ω.

Next, for the reverse inequality, given a best approximant v∗, consider the linear functional λ̃

defined on Vf := V ⊕ Rf by

λ̃(v + tf) = t∥f − v∗∥Ω, v ∈ V, t ∈ R.

This linear functional has norm one: indeed, setting aside the trivial case t = 0, one has

|λ̃(v + tf)| = |t| ∥f − v∗∥Ω ≤ |t| ∥f − (−v/t)∥Ω = ∥v + tf∥Ω,

with equality for t = 1 and v = −v∗. Therefore, by the Hahn–Banach extension theorem, there

exists a linear functional λ defined on C(Ω) such that ∥λ∥C(Ω)∗ = 1 and λ|Vf
= λ̃|Vf

, implying in
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particular λ|V = 0. The maximum in (5) is then larger than or equal to λ(f) = λ̃(f) = ∥f − v∗∥Ω,
i.e., than the minimum in (4). This concludes the sketch of strong duality.

It is worth commenting on the form of the Hahn–Banch extension λ in the above argument. To

do so, we notice that the linear functional λ̃ ∈ V∗
f is expressed as a convex combination of L

extreme points of the unit ball of V∗
f , where one can take L ≤ dim(Vf ) + 1 by applying Krein–

Milman and Carathéodory theorems. Since the extreme points of the unit ball of V∗
f are restrictions

to Vf of some ±δω, ω ∈ Ω, where δω represents the Dirac evaluation functional at a point ω, we

can write λ̃ =
∑L

ℓ=1 τℓεℓδωℓ |Vf
with ω1, . . . , ωL ∈ Ω, ε1, . . . , εL = ±1, and τ1, . . . , τL > 0 satisfying∑L

ℓ=1 τℓ = 1. It is then clear that the Hahn–Banach extension λ can be chosen as λ =
∑L

ℓ=1 τℓεℓδωℓ
.

Of note, the estimation of L can be refined to L ≤ dim(Vf ) by calling upon Theorem 2.13 from

Rivlin’s book [19], which states that a norm-one linear functional on a real finite-dimensional

subspace U of C(Ω) can be expressed as a convex combination of L ≤ dim(U) extreme points of

the unit ball of U∗. In the particular case U = Pd
k , it equates to Tchakaloff’s theorem and its

generalizations (notably by Richter [18]), stating that if a measure µ on Rd has moments up to

degree k, then there exists an atomic measure with at most
(
k+d
d

)
atoms in supp(µ) and with same

moments up to degree k.

Closing the digression on the value of L and keeping the above notation, we point out that

EV(f,Ω) = λ(f) = λ(f − v∗) =
L∑

ℓ=1

τℓεℓ(f − v∗)(ωℓ)(6)

≤
L∑

ℓ=1

τℓ|(f − v∗)(ωℓ)| ≤
L∑

ℓ=1

τℓ∥f − v∗∥Ω = ∥f − v∗∥Ω

= EV(f,Ω),

which implies that the equalities εℓ(f − v∗)(ωℓ) = ∥f − v∗∥Ω = EV(f,Ω) hold for all ℓ = 1, . . . , L.

This brings us to the notion of extremal signature associated with f − v∗, defined below along the

lines of [19, Section 2.2].

Definition 1. A signature with support (aka base) S ⊆ Ω is simply a function from S to {±1}.
A signature σ with support S is said to be extremal for V if there exist weights τω > 0, ω ∈ S, such
that

∑
ω∈S τωσ(ω)v(ω) = 0 for all v ∈ V. A signature σ with support S is said to be associated

with a function g ∈ C(Ω) if S is included in the set {ω ∈ Ω : |g(ω)| = ∥g∥Ω} of extremal points of g

and if σ(ω) = sgn(g(ω)) for all ω ∈ S.

The argument outlined before the definition justifies the following brief statement, found e.g. in

[19, Theorem 2.6]. We emphasize that it does not provide a way to find extremal signatures and

best approximants, but if one comes up with a guess for these (as we will do in Section 4), then it

provides a way to verify that the guess is correct.
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Theorem 2. An element v∗ ∈ V is a best approximant to f ∈ C(Ω) from V if and only if there

exists an extremal signature σ for V associated with f − v∗. Moreover, the support of such a

signature can be chosen to have size ≤ dim(V) + 1.

An important detail not made apparent in the above statement is the existence of a signature

common to all best approximants—this is revealed by (6), because the involved arguments did not

depend on the best approximant v∗. This fact explains our preference for solving (5) over (4),

especially since (4) typically have nonunique solutions.

2.2 Simple reductions

Given a fixed number d of variables and a fixed degree n, completely solving the problem of d-variate

nth degree Chebyshev polynomials requires finding best approximants to all d-variate nth degree

monomials, so we would a priori need to tackle
(
n+d−1
d−1

)
subproblems. For d = 3 and n = 6, it

amounts to 28 subproblems and for d = 3 and n = 10, it amounts to 66 subproblems. Fortunately,

this number can be decreased drastically by leveraging two simple reductions. The first reduction

allows us to discard the indices ki = 0 in the multiindex k of the monomial mk, provided the full

problem has been solved for all d′ < d. The second reduction allows us to consider only indices

k1, . . . , kd that are ordered from largest to smallest, say. These facts are precisely stated in the two

propositions below. In the first one, the domain Ω can be taken as any of our preferred choices—the

simplex S, the cross-polytope C, the euclidean ball B, or the hypercube H—by selecting φ = 0.

The argument, already found in [26, Proposition 4.1] for Ω = B, is included here to also cover the

case φ ̸= 0. The statement uses the notation N0 for {0, 1, 2, . . .}, ωI ∈ RI for the restriction of a

vector ω ∈ Rd to a subset I of {1, 2, . . . , d}, and Ic for the complement of I.

Proposition 3. Given k ∈ Nd
0 with |k| = k1 + · · · + kd = n, let I := {i = 1, . . . , d : ki > 0} and

let d′ := |I|. Let Ω′ ⊆ RI be the d′-dimensional domain defined by Ω′ = {ωI , ω ∈ Ω} and suppose

that there is a φ ∈ RIc such that the element ω̃ defined by ω̃i = ωi for i ∈ I and ω̃i = φi for i ∈ Ic

belongs to Ω whenever ω ∈ Ω. Then, with k′ := kI ∈ Nd′
0 , which satisfies |k′| = k′1 + · · ·+ k′d′ = n,

one has

EPd
n−1

(mk,Ω) = EPd′
n−1

(mk′ ,Ω
′).

Proof. On the one hand, with q′ ∈ Pd′
n−1 such that EPd′

n−1
(mk′ ,Ω

′) = ∥mk′−q′∥Ω′ and with q ∈ Pd
n−1

defined by q(x) = q′(xI), x ∈ Rd, we have

EPd′
n−1

(mk′ ,Ω
′) = ∥mk′ − q′∥Ω′ = max

ω∈Ω
|mk′(ωI)− q′(ωI)| = max

ω∈Ω
|mk(ω)− q(ω)| = ∥mk − q∥Ω

≥ EPd
n−1

(mk,Ω).
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This inequality was obtained independently of the existence of φ. On the other hand, for the reverse

inequality, given p ∈ Pd
n−1, we have

∥mk − p∥Ω = max
ω∈Ω

|mk(ω)− p(ω)| ≥ max
ω∈Ω

|mk(ω̃)− p(ω̃)| = max
ω∈Ω

|mk′(ωI)− p̃(ωI)|,

where p̃ is implicitly defined as a polynomial in Pd′
n−1. Therefore, we obtain

∥mk − p∥Ω ≥ ∥mk′ − p̃∥Ω′ ≥ EPd′
n−1

(mk′ ,Ω
′).

The inequality EPd
n−1

(mk,Ω) ≥ EPd′
n−1

(mk′ ,Ω
′) follows by taking the infimum over p.

The second fact, stated hereafter, has been previously used to derive a number of examples in

[1, 2, 25]. We include a standard argument (see e.g. [26, Theorem 3.2]) for the convenience of the

reader. This fact is to be used with V = Pd
n−1 and G being the group of permutation of {1, 2, . . . , d}.

Proposition 4. Given a finite group G acting on a domain Ω ⊆ Rd, for h ∈ C(Ω) and g ∈ G, let

hg ∈ C(Ω) be defined by hg(ω) = h(gω), ω ∈ Ω. If the domain Ω and the subspace V ⊆ C(Ω) are

invariant under the action of G, in the sense that

Ωg := {gω, ω ∈ Ω} coincides with Ω for all g ∈ G,

Vg := {vg, v ∈ V} coincides with V for all g ∈ G,

then, for any f ∈ C(Ω) and any g ∈ G,

EV(f,Ω) = EV(fg,Ω).

Furthermore, if f is invariant under the action of G, i.e., if fg coincides with f for all g ∈ G, then

there is a best approximant v∗ to f from V which is invariant under the action of G, i.e., v∗g = v∗

for all g ∈ G.

Proof. For f ∈ C(Ω), let v′ ∈ V be a best approximant to f from V. The invariance of Ω implies

that, for any g ∈ G,

EV(f,Ω) = max
ω∈Ω

|f(ω)− v′(ω)| = max
ω∈Ω

|f(gω)− v′(gω)| = max
ω∈Ω

|fg(ω)− v′g(ω)|

≥ EV(fg,Ω),

where the last step relied on the invariance of V to ensure that v′g ∈ V. A similar argument with

fg in place of f and g−1 in place of g would yield the reverse inequality EV(fg,Ω) ≥ EV(f,Ω) and

in turn the desired equality. Now, let us assume in addition that fg = f for all g ∈ G. Using

the above, we have ∥f − v′∥Ω = ∥f − v′g∥Ω, so that v′g is also a best approximant to f from V for

all g ∈ G. Consequently, the element v∗ := |G|−1
∑

g∈G v′g ∈ V, as a convex combination of best

approximants, is itself a best approximant to f from V. It is also readily seen that v∗ thus defined

is invariant under the action of G.
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As alluded to before, Propositions 3 and 4 imply that, for the simplex, the cross-polytope, the

euclidean ball, and the hypercube, it is enough to consider the monomials mk where k ∈ Nd
0

satisfies k1 + · · · + kd = n and k1 ≥ · · · ≥ kd ≥ 1. The number of these monomials equals the

number of partitions of the integer n into exactly d parts. This number pd(n) is known to obey the

recurrence relation pd(n) = pd−1(n−1)+pd(n−d), which allows one to arrange them in a triangular

table akin to Pascal’s triangle. For instance, for d = 3 and n = 10, one has p3(10) = 8. For d = 3

and n = 6, one has p3(6) = 3, with the three partitions being (4, 1, 1), (3, 2, 1), and (2, 2, 2). In

case of the cross-polytope, the values of the three corresponding errors of best approximation are

reported in the last column of Table 2, none of which were known before.

2.3 Known multivariate Chebyshev polynomials

In this section, we gather previously obtained results about multivariate Chebyshev polynomials

for our domains of interest, with the exception of the cross-polytope, which seems to have been

cast aside in the literature. We will use from now on the shorthand notation

E(k,Ω) := EPd
n−1

(mk,Ω),

since considering k = (k1, . . . , kd) with k1 + · · ·+ kd = n implicitly tells us the value of d and n.

The hypercube. The case of the hypercube, i.e., Ω = H, is completely resolved. Indeed, the

geometry of the domain bodes well for calculations involving the tensor products of univariate

polynomials p1, . . . , pd, as defined by (p1⊗· · ·⊗pd)(x1, . . . , xd) = p1(x1) · · · pd(xd). It is not difficult

to establish the following result by invoking signatures.

Theorem 5. Given k ∈ Nd with k1 + · · ·+ kd = n, one has

E(k,H) = 2−n+d

and a best approximant to mk from Pd
n−1 is given by mk − 2−n+dTk1 ⊗ · · · ⊗ Tkd .

This result was proved by several authors, see e.g. [22, 6]. In [24], it has also been shown that

mk − 2−n+dTk1 ⊗ · · · ⊗ Tkd is a unique best approximant when and only when d = 2 and k1 = k2.

The euclidean ball. The case of the euclidean ball, i.e., Ω = B, is partially resolved: it is

solved for d = 2 variables but not completely in d ≥ 3 variables. With Uℓ = T ′
ℓ+1/(ℓ+ 1) denoting

the univariate ℓth degree Chebyshev polynomial of the second kind, the result for d = 2 reads as

follows.
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Theorem 6. Given k ∈ N2 with k1 + k2 = n, one has

E(k,B) = 2−n+1

and a best approximant to mk from P2
n−1 is given by mk − 2−n(Uk1 ⊗ Uk2 − Uk2−2 ⊗ Uk1−2), with

the understanding that U−1 = 0.

This was obtained for the first time in [10]. Other explicit best approximants can be found in [3, 17].

It is also known that the difference between two best approximants has the form (1−x21−x22)q(x1, x2)

for some q ∈ P2
n−3.

For d > 2, best approximants to monomials are known only for a few low-degree instances, such as

m(1,...,1)(x) = x1x2 · · ·xd and m(2,1,...,1)(x) = x21x2 · · ·xd, see [1, 2, 25]. Restricting our attention to

the case d = 3, we now cite some articles and the result they contain:1,2

[1] : E((1, 1, 1), B) = 3−3/2,

[2] : E((2, 1, 1), B) = (3−
√
8)/2,

[14] : E((3, 1, 1), B) = (1− a)(a3/5)1/4/5, a = smallest root of 9t4 − 29t3 + 24t2 − 29t+ 9,

[25] : E((2, 2, 2), B) = 1/72,

[25] : E((4, 4, 4), B) = b−1/272, b ≈ 21.8935834.

The simplex. The case of the simplex, i.e., Ω = S, is also partially resolved. Indeed, for d = 2,

best approximants to monomials are presented in [15]. The result is recalled below.

Theorem 7. Given k ∈ N2 with k1 + k2 = n, one has

E(k, S) = 2−2n+1

and a best approximant to mk from P2
n−1 is given by mk − Tk1,k2 , where

Tk1,k2(x, y) = Tk1−k2(2x− 1)Tk2(8xy − 1) + 8xy(2x− 1)Uk1−k2−1(2x− 1)Uk2−1(8xy − 1)

for k1 ≥ k2, with the understanding that U−1 = 0.

In the case d = 3, we mention the results

[25] : E((1, 1, 1), S) = 1/72,

[25] : E((2, 2, 2), S) = b−1/272, b ≈ 21.8935834.

Note that there is a close connection between the best approximants on the simplex S to the

monomial mk(x) = xk11 · · ·xkdk and the best approximants on the euclidean ball B to the monomial

m2k(x) = x2k11 · · ·x2kdk , see [25] for the precise statement.

1The value of E((3, 1, 1), B) is implicit in [14, Theorem 2.1.(b)]—deriving the explicit value requires some work.
2There was a typographical error concerning the value of E((4, 4, 4), B) in [25, Theorem 3.2].
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3 Description of the Computational Procedure

In this section, we explain the procedure that we derived and exploited in order to produce a number

of new multivariate Chebyshev polynomials (uncovered in Section 4). Although our implementation,

available at https://github.com/foucart/Multivariate_Chebyshev_Polynomials, limits itself

to the best approximation from Pd
n−1 to monomials mk ∈ Pd

n on the hypercube, the euclidean ball,

the cross-polytope, and the simplex, the underpinning procedure is more general, as it could handle

any polynomial f ∈ Pd
N , N ≥ n, instead of mk, while the domain Ω ∈ Rd could be any compact

(with nonempty interior) basic semialgebraic set, meaning that there exist polynomials g1, . . . , gH
such that

(7) Ω = {x ∈ Rd : g1(x) ≥ 0, . . . , gH(x) ≥ 0},

which further satisfies the Archimedean condition, meaning e.g. that there exist a constant C > 0

and sum-of-squares polynomials σ0, σ1, . . . , σH such that

C − ∥x∥22 = σ0(x) +
∑H

h=1
gh(x)σh(x) for all x ∈ Ω.

All four domains considered in this paper satisfy the Archimedean condition—for instance, the

argument for the simplex S can be found in [21, Example 12.49] and a similar argument applies to

any compact convex polytope.

Our strategy to deal with the best approximation problem is to transform it into an instance

of the Generalized Moment Problem (GMP), so that we can invoke the Moment-SOS hierarchy

designed to solve a GMP whose data are algebraic (polynomials and semialgebraic sets), see [12].

This process leverages a combination of: (i) semidefinite programming3, an efficient machinery in

Convex Optimization developed since the late seventies, and (ii) powerful positivity certificates and

their dual analogs concerning the moment problem. These two ingredients were not available at the

time of pioneering works such as the paper [20] by Rivlin and Shapiro, in which dual formulations

were mostly used to prove the existence of optimal solutions and to characterize them. For the

numerical computations, we will rely on GloptiPoly 3, since many of the GMP components are built

in this matlab/octave program, see [11].

Let us be more specific about the computation of the error of best approximation by polynomials

from Pd
n−1 to a polynomial f ∈ Pd

N , N ≥ n, i.e., of E∗ := EPd
n−1

(f,Ω), viewed as the optimal

value of (4) or of (5). Concentrating first on the program (4)—which we call primal—it can be

reformulated along the lines of (1) into

E∗ = min
c∈R,p∈Pd

n−1

c subject to

{
c+ f − p ≥ 0 on Ω,

c− f + p ≥ 0 on Ω.

3A semidefinite program (SDP) is a conic convex optimization problem which can be solved in time polynomial

in its input size, up to arbitrary (fixed) precision (e.g. with interior point methods); for more details, see e.g. [13].
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For Ω as in (7), the nonnegativity constraint c+ f − p ≥ 0 on Ω, say, is implied by the existence of

sum-of-squares polynomials σ+
0 , σ

+
1 , . . . , σ

+
H such that c+ f(x)− p(x) = σ+

0 (x) +
∑H

h=1 gh(x)σ
+
h (x)

for all x ∈ Ω. If we constrain the degree of each σ+
h to be at most 2s, using the notation σ+

h ∈ Σ2s

in the process, we clearly obtain E∗ ≤ ubs, where

ubs := min
c∈R,p∈Pd

n−1

σ±
0 ,...,σ±

H∈Σ2s

c subject to

{
c+ f − p = σ+

0 +
∑H

h=1 ghσ
+
h ,

c− f + p = σ−
0 +

∑H
h=1 ghσ

−
h .

As it turns out, the above program can be recast as a finite-dimesional semidefinite program,

hence can be computed. The sequence of (ubs)s∈N of upper bounds can be shown to be monotone

nonincreasing (which is easily seen) and convergent to E∗ (which requires a fundamental result

called Archimedean Positivstellensatz). As for the program (5)—which we call dual—it produces

alongside a nondecreasing sequence (lbt)t∈N of computable lower bounds converging to E∗. This is

to be justified in greater detail in Theorem 8 below.

These ideas have been implemented in the commands ChebPoly primal and ChebPoly dual and we

emphasize that a precise estimation of the error of best approximation through lbt ≤ E∗ ≤ ubs is

already available at this point, even if convergence was not guaranteed. But the situation is more

favorable than that: it often happens that the convergence of ubs and lbt occurs in a finite number

of steps, which seems to be the case for the problem at hand. Lacking an a priori knowledge

of the necessary number of steps, we compute ubs and lbt until these quantities stabilize, i.e.,

until ubs+1 = ubs and lbt+1 = lbt. Actually, we do not need theoretical guarantees that this

stabilization occurs either. Indeed, the process only serves as a prediction phase in our workflow,

providing candidates for a best approximant v∗ and a signature σ, as output by ChebPoly primal

and ChebPoly dual, respectively. Then comes a verification phase, where the candidates v∗ and σ

(maybe cleaned up of numerical inaccuracies and imported into a symbolic system) can be verified

to be genuine best approximant and associated signature by invoking Theorem 2.

To finish the description of our computational procedure, we deem it appropriate to present an

explanation of the arguments underpinning the hierarchy of semidefinite programs which is at the

heart of our optimization-aided strategy for tackling the best approximation problem. In view of

our preference for the dual formulation (5), we outline the moment-based methodology at stake

here—the complete justification in the most general setting can be found in [23], as well as the

sum-of-squares-based methodology. The forthcoming details can be useful for solving the hierarchy

with an arbitrary semidefinite solver. They are not fully necessary in GloptiPoly 3, as the latter

offers a more user-friendly way to formulate the problem. Another advantage of GloptiPoly 3

is that, in addition to outputting moments, it can also extract the atomic measure they came

from, i.e., the signature we are looking for. In the formal statement below, the matrices Hankt(y)

and Hank∞(y) built from an infinite sequence y indexed by Nd
0 are the

(
t+d
d

)
×
(
t+d
d

)
and infinite

Hankel matrices with entries yi+j , i, j ∈ Nd
0 with |i|, |j| ≤ t and i, j ∈ Nd

0, respectively. As for

the operators Gh defined on RNd
0 , they represent the linear maps transforming the sequence of

11
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moments of a Borel measure ν into the sequence of moments of the Borel measure gh × ν, so that

(Ghy)ℓ =
∑

|ℓ′|≤deg(gh)

coeffmℓ′ (gh)yℓ+ℓ′ for any ℓ ∈ Nd
0.

Theorem 8. Given a semialgebraic set Ω = {x ∈ Rd : g1(x) ≥ 0, . . . , gH(x) ≥ 0} satisfying the

Archimedean condition and given a polynomial f ∈ Pd
N , N ≥ n, the error of best approximation

to f from Pd
n−1 relative to Ω is equal to

EPd
n−1

(f,Ω) = lim
t→∞

lbt,

where the nondecreasing sequence (lbt) contains the optimal values of the following finite-dimensional

semidefinite programs, parametrized by t ≥ N +max{n′
1, . . . , n

′
H}, n′

h := ⌈deg(gh)/2⌉:

maximize
y±

∑
|ℓ|≤N

coeffmℓ
(f)(y+ℓ − y−ℓ ) s.to y+ℓ − y−ℓ = 0 for |ℓ| ≤ n− 1, y+0 + y−0 = 1,

and Hankt(y
±) ⪰ 0,Hankt−n′

1
(G1y

±) ⪰ 0, . . . ,Hankt−n′
H
(GHy±) ⪰ 0.

Proof (Sketch). From the dual representation (5) for the error of best approximation and from

the identification of linear functionals λ ∈ C(Ω)∗ with Borel measures µ on Ω via λ(g) =
∫
Ω gdµ,

g ∈ C(Ω), we arrive at

EPd
n−1

(f,Ω) = sup
µ

∫
Ω
fdµ s.to

∫
Ω
mℓdµ = 0 for |ℓ| ≤ n− 1 and

∫
Ω
d|µ| = 1.

Next, we consider the Jordan decomposition of µ as µ+ − µ− where µ+, µ− are nonnegative Borel

measures on Ω, so that |µ| = µ++µ−. We think of these nonnegative Borel measures through their

infinite sequences of moments given by

y±ℓ =

∫
Ω
mℓdµ

±, ℓ ∈ Nd
0.

By (the dual facet of) Putinar’s theorem [16], aka the Archimedean Positivstellensatz—a simplified

version of Schmüdgen’s theorem when the Archimedean condition holds, see [21, Theorem 12.36]—

there is a one-to-one correspondence between nonnegative Borel measures ν on Ω and sequences

(of moments) y ∈ RNd
0 satisfying Hank∞(y) ⪰ 0 and Hank∞(G1y) ⪰ 0, . . . ,Hank∞(GHy) ⪰ 0.

Invoking this fact for ν = µ+ and ν = µ− yields

EPd
n−1

(f,Ω) = sup

y±∈RNd0

∑
|ℓ|≤N

coeffmℓ
(f)(y+ℓ − y−ℓ ) s.to y+ℓ − y−ℓ = 0 for |ℓ| ≤ n− 1, y+0 + y−0 = 1,

and Hank∞(y±) ⪰ 0,Hank∞(G1y
±) ⪰ 0, . . . ,Hank∞(GHy±) ⪰ 0.

The semidefinite program announced in the statement of the theorem is a truncation of the above

infinite-dimensional program to a finite-dimensional one at a level t ∈ N large enough to involve

all the moments µ±
ℓ , |ℓ| ≤ N , into each Hankel matrix. The nondecreasingness of (lbt) owes to the

fact that finite sequences y± optimal for lbt generate, when padded with zeroes, feasible sequences

for lbt+1, hence lbt+1 ≥ lbt. The justification that lbt converges to EPd
n−1

(f,Ω) as t → ∞ involves

lengthy technicalities and is not sketched here.
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4 New Explicit Results

In this section, we present the discoveries that were made by exploiting the computational procedure

just described. In particular, we consider the situation of d = 3 variables and give the values of

the errors of best approximation from P3
n−1 to (essentially) all monomials mk of degree n up to 6.

Excluding the already settled case where Ω is the hypercube, we report, from largest to smallest Ω,

on the cases of the euclidean ball, the cross-polytope, and the simplex in Tables 1, 2, and 3,

respectively. The corresponding numerical values can be reproduced by running the codes made

available on https://github.com/foucart/Multivariate_Chebyshev_Polynomials. In a few

instances, we could even distill explicit expressions for previously unknown Chebyshev polynomials.

4.1 The euclidean ball

When Ω = B, the values of E(k,Ω) had earlier been found when |k| = 3 and |k| = 4, but not

for |k| = 5 (except k = (3, 1, 1)) nor |k| = 6 (except k = (2, 2, 2)). All these values are shown

in Table 1. Here and in other tables, the value of E(k,Ω) needs to be multiplied by the factor

presented at the top of its column, so e.g. E((4, 1, 1), B) ≈ 1.923 × 10−2. This estimate indicates

that upper bounds ubs and lower bounds lbt agreeing to four significant digits were obtained for

some truncation parameters s and t, whose values can be found in the reproducible files.

degree n = 3 (×10−1) degree n = 4 (×10−2) degree n = 5 (×10−2) degree n = 6 (×10−2)

E(1, 1, 1), B) ≈ 1.924 E((2, 1, 1), B) ≈ 8.578 E((3, 1, 1), B) ≈ 4.016 E((4,1,1),B) ≈ 1.923

E((2,2,1),B) ≈ 3.630 E((3,2,1),B) ≈ 1.652

E((2, 2, 2), B) ≈ 1.388

Table 1: Euclidean ball in dimension d = 3: the previously unknown values are shown in boldface.

In the case k = (2, 2, 1), it was possible to recognize (part of) the signature points, which led us to

deriving a Chebyshev polynomial explicitly. The result reads as follows.

Theorem 9. With a := max
{
(1 + t)2(1 − t)t/(4(1 + 4t + 4t2)), t ∈ [0, 1]

}
≈ 3.63000825 × 10−2,

the error of best approximation on the euclidean ball to m(2,2,1)(x1, x2, x2) = x21x
2
2x3 by trivariate

polynomials of degree at most 4 is

EP3
4
(m(2,2,1), B) = a,

while a Chebyshev polynomial is given by

P (x) = m(2,2,1)(x1, x2, x2) + a T3(x3),

where T3(t) = 4t3 − 3t is the univariate Chebyshev polynomial of degree 3.
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Proof. Guided by our computational procedure, we make the guess—which we are about to verify—

that a signature has support S = S+ ∪ S−, where S− = −S+ and

S+ =


0

0

1

 ,


√
3/2

0

−1/2

 ,

−
√
3/2

0

−1/2

 ,

 0√
3/2

−1/2

 ,

 0

−
√
3/2

−1/2

 ,


√

(1− τ2)/2√
(1− τ2)/2

τ

 ,


√
(1− τ2)/2

−
√

(1− τ2)/2

τ

 ,

−
√

(1− τ2)/2

−
√
(1− τ2)/2

τ

 ,


√
(1− τ2)/2

−
√
(1− τ2)/2

τ


 .

For reasons soon to become apparent, the parameter τ ≈ 0.4052 is chosen as the maximizer of

(1 + t)2(1 − t)t/(4(1 + 4t + 4t2)) over t ∈ [0, 1], so that (1 + τ)2(1 − τ)τ/4 = a(1 + 4τ + 4τ2).

Multiplying throughout by (1− τ) yields ((1− τ2)/2)2τ = a(1− T3(τ)). As for best approximants

to m(2,2,1) from P3
4 , we shall show, in two steps, that p∗(x1, x2, x3) := −aT3(x3) is one of them.

The first step consists in proving that |(m(2,2,1) − p∗)(x)| = ∥m(2,2,1) − p∗∥B for all x ∈ S.
To see this, we start by noticing that (m(2,2,1) − p∗)(x) = a for all x ∈ S+—this is a simple

verification by plugging in the values x ∈ S+ into (m(2,2,1) − p∗)(x), but we emphasize that

(m(2,2,1) − p∗)(±
√
1− τ2,±

√
1− τ2, τ) = ((1 − τ2)/2)2τ + aT3(τ) = a owes to our choice of τ .

Then, from S− = −S+ and the oddity of m(2,2,1), it follows that (m(2,2,1) − p∗)(x) = −a for all

x ∈ S−. All in all, we arrived at |(m(2,2,1) − p∗)(x)| = a for all x ∈ S. Next, we claim that

|(m(2,2,1) − p∗)(x)| ≤ a for all x ∈ B. By the oddity of m(2,2,1) again, it is enough to establish, for

all x ∈ B, that (m(2,2,1)− p∗)(x) ≤ a, i.e., that x21x
2
2x3 ≤ a(1−T3(x3)). If x3 ∈ [−1, 0], this is clear.

If x3 ∈ [0, 1], it relies on the definition of a in the last inequality of the chain

x21x
2
2x3 ≤

(x21 + x22)
2

4
x3 ≤

(1− x23)
2

4
x3 = (1− x3)

[
(1 + x3)

2(1− x3)x3
4

]
≤ (1− x3)

[
a(1 + 4x3 + 4x23)

]
= a(1− T3(x3)).

Altogether, we have obtained |(m(2,2,1)−p∗)(x)| = ∥m(2,2,1)−p∗∥B = a for all x ∈ S, as announced.

The second step comprises showing that ∥m(2,2,1)−p∥B ≥ a for any p ∈ P3
4 , or in fact for some best

approximant p to m(2,2,1) from P3
4 . Let us momentarily take for granted that v = p∗ − p satisfies

v(x) ≥ 0 for some x ∈ S+. With the help of this x ∈ S+, we derive

∥m(2,2,1) − p∥B ≥ (m(2,2,1) − p)(x) = (m(2,2,1) − p∗)(x) + (p∗ − p)(x) = a+ v(x) ≥ a,

as desired. Thus, it remains to justify that existence of x ∈ S+ such that v(x) ≥ 0. According to

Proposition 4, the best approximant p can be chosen to inherit properties of m(2,2,1), in particular

being odd in x3, even in x1 and x2, and symmetric when swapping x1 and x2. Therefore, one can

choose p to contain only the terms x3, x
3
3, and (x21 + x22)x3, and when restricted to the boundary

of B, it contains only the terms x3 and x33, just like p∗. As a consequence, we write, for some

c, d ∈ R, v(x) = cx3 + dx33 for all x ∈ S+. Now assume by contradiction that v(x) < 0 for all

14
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x ∈ S+. This translates, after simplification, into c+d < 0, −4c−d < 0, and τ−2c+d < 0. Adding

the second to the first yields −3c < 0, while adding the second to the third yields (τ−2 − 4)c < 0,

which is impossible since τ−2 ≈ 6.088 > 4. Thanks to this contradiction, the proof is complete.

We have seen that the signature in the above proof was supported on the boundary of the ball. As

a matter of fact, this is a phenomenon we noticed in all cases (where we could extract signatures).

We thus conjecture that, for the approximation of monomials on the euclidean ball, signatures

actually live on the sphere.

4.2 The cross-polytope

To the best of our knowledge, Chebyshev polynomials relative to the cross-polytope have not been

investigated in the literature, hence the values of E(k,C) reported in Table 2 seem to all be new.

As expected, they are smaller than the values of E(k,B) presented in Table 1 and larger than the

values of E(k, S) shown in Table 3.

degree n = 3 (×10−2) degree n = 4 (×10−2) degree n = 5 (×10−3) degree n = 6 (×10−3)

E((1,1,1),C) ≈ 3.703 E((2,1,1),C) ≈ 1.273 E((3,1,1),C) ≈ 4.764 E((4,1,1),C) ≈ 1.853

E((2,2,1),C) ≈ 3.398 E((3,2,1),C) ≈ 1.087

E((2,2,2),C) ≈ 0.661

Table 2: Cross-polytope in dimension d = 3: all values were previously unknown.

4.3 The simplex

When Ω = S, the values of E(k,Ω) had earlier been found when |k| = 3, but not for |k| = 4,

|k| = 5, and |k| = 6 (except k = (2, 2, 2)). All these values are shown in Table 3. It appears

empirically that signatures (when they could be extracted) live on the boundary of the domain,

and more precisely here on the face of equation x1 + x2 + x3 = 1. Note that this would imply,

due to the close connection between the approximation of mk on S and the approximation of m2k

on B, some particular cases of the conjecture relative to B.

degree n = 3 (×10−2) degree n = 4 (×10−3) degree n = 5 (×10−4) degree n = 6 (×10−4)

E((1, 1, 1), S) ≈ 1.388 E((2,1,1),S) ≈ 2.688 E((3,1,1),S) ≈ 5.984 E((4,1,1),S) ≈ 1.405

E((2,2,1),S) ≈ 4.695 E((3,2,1),S) ≈ 1.000

E((2, 2, 2), S) ≈ 0.6265

Table 3: Simplex in dimension d = 3: the previously unknown values are shown in boldface.
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In the case k = (2, 1, 1), we could use the insight brought forward by our computations to derive a

Chebyshev polynomial explicitly. The result reads as follows.

Theorem 10. With τ ∈ [0, 1/4] being the solution to max
{
y(1−2y)(y−τ)2, y ∈ [0, 1/2]

}
= τ2/18

and with c := −3/τ , the error of best approximation on the simplex to m(2,1,1)(x1, x2, x3) = x21x2x3
by trivariate polynomials of degree at most 3 is

EP3
3
(m(2,1,1), S) =

1

2c2
,

while a Chebyshev polynomial is given by

P (x) = x21x2x3

+
1

2c2
[
−16x21(x2 + x3) + 16x1(x2 + x3)

2 − 2(64 + 12c+ c2)x1x2x3 + 8x2x3 − 2(x2 + x3) + 1
]
.

Proof. Guided by our computational procedure, we make the guess—which we are about to verify—

that there is a signature with support S = S+ ∪ S−, where

S+ =


1/4

3/4

0

 ,

1/4

0

3/4

 ,

 0

1/2

1/2

 ,

1

0

0

 ,

1− 2τ

τ

τ


 ,

S− =


3/4

1/4

0

 ,

3/4

0

1/4

 ,

0

0

1

 ,

0

1

0

 ,

1− 2σ

σ

σ


 .

The parameters τ, σ ∈ [0, 1/2] are considered free for now—their specific choice will be revealed

later.

The first step consists in proving that |P (x)| = ∥P∥S for all x ∈ S. To this end, we start by proving

that ∥P∥S ≤ 1/(2c2), i.e., that |P (x1, x2, x3)| ≤ 1/(2c2) whenever x1, x2, x3 ≥ 0 and x1+x2+x3 ≤ 1.

This is easy to see if x1 = 0, since then 2c2 P (0, x2, x3) = 8x2x3 − 2(x2 + x3) + 1 is bounded as{
≥ −2(x2 + x3) + 1 ≥ −2 + 1 = −1,

≤ 2(x2 + x3)
2 − 2(x2 + x3) + 1 ≤ 1.

Using the fact that 8t(1− 2t) ≤ 1 for all t ∈ R, it is also easy to see that |P (x1, x2, x3)| ≤ 1/(2c2)

if x2 = 0 or x3 = 0, since, e.g., 2c2 P (x1, x2, 0) = −16x21x2 + 16x1x
2
2 − 2x2 + 1 is

=

{
−2x1[8x2(x1 − x2)]− 2x2 + 1 ≥ −2x1[8x2(1− 2x2)]− 2x2 + 1 ≥ −2x1 − 2x2 + 1 ≥ −1,

2x2[8x1(x2 − x1)]− 2x2 + 1 ≤ 2x2[8x1(1− 2x1)]− 2x2 + 1 ≤ 2x2 − 2x2 + 1 = 1.

We therefore consider the case where x1, x2, x3 are all nonzero and we notice that we can assume

x2 = x3. Indeed, if we reparametrize by setting y = (x2 + x3)/2 and z = (x2 − x3)/2, so that
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x2x3 = y2 − z2, then the expression for P (x) becomes

P (x) = x21y
2 +

1

2c2
[
−32x21y + 64x1y

2 − 2(64 + 12c+ c2)x1y
2 + 8y2 − 4y + 1

]
(8)

− x21z
2 +

1

2c2
[

2(64 + 12c+ c2)x1z
2 − 8z2

]
=

1

2c2
[
2c2x21y

2 − 32x21y − 2(32 + 12c+ c2)x1y
2 + 8y2 − 4y + 1

]
− z2q(x1)

for some univariate quadratic polynomial q. Thus, given x ∈ S such that |P (x)| = ∥P∥S and

t ∈ R small enough, we define x(t) ∈ S by x
(t)
1 = x1, x

(t)
2 = x2 + t, and x

(t)
3 = x3 − t. In view of

(x
(t)
2 + x

(t)
3 ) = (x2 + x3)/2 =: y and of (x

(t)
2 − x

(t)
3 ) = (x2 − x3)/2 + t =: z + t, while supposing e.g.

that P (x) > 0, the inequality P (x(t)) ≤ P (x) reads P (x1, y, y)−(z+t)2q(x1) ≤ P (x1, y, y)−z2q(x1)

whenever |t| is small enough. This implies that zq(x1) = 0, hence that P (x) = P (x1, y, y), meaning

that the last two coordinates of an extremal point can be assumed to be equal, as claimed. Now,

to determine the maximum of |P (x1, y, y)| when x1, y ≥ 0 and x1 + 2y ≤ 1, we recall from (8) that

(9) P (x1, y, y) =
1

2c2
[
2c2x21y

2 − 32x21y − 2(32 + 12c+ c2)x1y
2 + 8y2 − 4y + 1

]
,

so that
∂P (x1, y, y)

∂y
=

1

2c2
[
4c2x21y − 32x21 − 4(32 + 12c+ c2)x1y + 16y − 4

]
.

As a consequence, at a critical point, we have (32+12c+ c2)x1y = c2x21y−8x21+4y−1 and in turn

P (x1, y, y) =
1

2c2
[
−16x21y − 2y + 1

]
.

It follows that |P (x1, y, y)| ≤ 1/(2c2) at any critical point, since [−16x21y − 2y + 1] ≤ 1 is clear,

while [−16x21y − 2y + 1] ≥ −1 holds because 16x21y + 2y = 2y(8x21 + 1) ≤ (1 − x1)(8x
2
1 + 1), the

latter having maximal value (68+5
√
10)/54 ≈ 1.5520 ≤ 2 over x1 ∈ [0, 1]. At this point, it remains

to verify that |P (x1, y, y)| ≤ 1/(2c2) on the boundary of the domain {x1 ≥ 0, y ≥ 0, x1 + 2y ≤ 1}.
Since the cases x1 = 0 and y = 0 have already been dealt with, we need to consider the case

x1 = 1− 2y, y ∈ [0, 1/2]. After some technical calculations left to the reader, starting from (9) and

recalling that τ = −3/c, we arrive at

(10) P (1− 2y, y, y) =
1

2c2
− 2y(1− 2y)(y − τ)2, y ∈ [0, 1/2].

The inequality P (1− 2y, y, y) ≤ 1/(2c2) is obvious from here. The parameter τ is chosen to secure

the other inequality P (1− 2y, y, y) ≥ −1/(2c2), which is equivalent to y(1− 2y)(y − τ)2 ≤ 1/(2c2)

for all y ∈ [0, 1/2] and thus follows from the equation max
{
y(1−2y)(y− τ)2, y ∈ [0, 1/2]

}
= τ2/18.

Note that this equation has a (unique) solution in [0, 1/4], because τ2/18 increases from 0 to 1/288

on this interval and max
{
y(1−2y)(y−τ)2, y ∈ [0, 1/2]

}
decreases from a positive quantity to 1/512

there. In consequence, we have now established that |P (x)| ≤ 1/(2c2) for all x ∈ S, as announced.

Let us turn to the justification that |P (x)| = 1/(2c2) for all signature points x ∈ S = S+ ∪ S−.

From (10), we immediately see that P (x) = 1/(2c2) for the last three points of S+. The fact that
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P (x) = −1/(2c2) for the last point of S− is due to the choice of σ, as we take it to be the maximizer

of y(1 − 2y)(y − τ)2 over y ∈ [0, 1/2], ensuring that σ(1 − 2σ)(σ − τ)2 = 1/(2c2) and hence that

P (1 − 2σ, σ, σ) = −1/(2c2). As for the other signature points, notice that they are of the form

(1− y, y, 0) or (1− y, 0, y), for which technical calculations left to the reader yield

P (1− y, y, 0) = P (1− y, 0, y) = − 1

2c2
T3(2y − 1), y ∈ [0, 1],

where, as usual, T3(t) = 4t3− 3t is the univariate Chebyshev polynomial of degree 3. It then easily

follows that P (x) = 1/(2c2) for the first two points of S+ and that P (x) = −1/(2c2) for the first

four points of S−. Altogether, we have now obtained |P (x)| = ∥P∥S = 1/(2c2) for all x ∈ S, as
announced.

The second step consists in proving that ∥m(2,1,1) − p∥S ≥ 1/(2c2) for any p ∈ P3
3 . To this end, we

notice that all signature points x ∈ S lie on the face F := {x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1+x2+x3 = 1}
and we remark that {(x1, x2) : x ∈ S} is the support of an extremal signature for P2

3 associated

with P|F , in the sense that there exist cx > 0, x ∈ S, such that
∑

x∈S cx sgn(P (x)) r(x1, x2) = 0 for

all r ∈ P2
3 . This can be verified (numerically) by looking at the null space of the 10 × 10 matrix

with entry sgn(P (x))m(k1,k2)(x1, x2) on the row indexed by (k1, k2) with k1 + k2 ≤ 3 and on the

column indexed by x ∈ S. Theorem 2 could now be invoked. Alternatively, given p ∈ P3
3 , we can

write m(2,1,1) − p = P − q for some q ∈ P3
3 and consider an x ∈ S such that sgn(P (x)) q(x) ≤ 0,

which is possible for otherwise
∑

x∈S cx sgn(P (x)) q(x1, x2, 1− x2 − x3) = 0 would be violated. In

this way, the desired inequality follows from

∥m(2,1,1) − p∥S ≥ |P (x)− q(x)| ≥ |P (x)| = 1

2c2
.

The proof is now complete.

Remark. The numerical values of the parameters τ and σ are τ ≈ 0.21998 and σ ≈ 0.41942,

leading to the error of best approximation the numerical value EP3
3
(m(2,1,1), S) ≈ 2.68850 × 10−3.

In fact, it can be shown (a computer algebra system will facilitate the task) that τ is the smallest

real root of the quartic polynomial 2880t4 − 5472t3 + 4880t2 − 1944t+ 243.

5 Conclusion

In this article, we proposed a semidefinite-programming method to compute best approximants to

monomials by multivariate polynomials of lower degree. More than providing numerical values, the

method allows us to make guesses for the multivariate analogs of Chebyshev polynomials that can—

sometimes—be a posteriori certified explicitly or symbolically. Of note, the generic nonuniqueness

of such analogs prompted us to preferentially solve the dual optimization program, putting the

classical notion of signature at center stage. We emphasize that the underlying methodology is
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quite versatile and should enable to attack other problems in multivariate Approximation Theory

by relying on modern tools from Optimization Theory, so long as one is ready to give up on purely

analytical solutions. This is a point of view already brought forward by a subset of the authors to

determine minimal projections (exploiting moments, see [7]) and Chebyshev polynomials associated

to union of intervals (exploiting sums-of-squares, see [8]). In the multivariate setting, we should also

be able to deal with unions of domains, as well as tackling norms other than L∞ (notably L1 and

L2m, m ∈ N), adding convex constraints (e.g. interpolatory, shape-enforcing, etc), in the spirit of

the proof-of-concept software Basc, short for ‘Best Approximations by Splines under Constraints’,

see [9]. We note, though, that the semidefinite programs encountered in Basc could only be handled

thanks to the benefits of representing univariate polynomials in the Chebyshev basis rather than

in the monomial basis, so a similar approach should be taken in the multivariate setting. This is

indeed realizable, at least in theory, and we give pointers on how to do this in some supplementary

material. Still, bringing Basc to the multivariate realm will be a mighty task, but certainly one

worth taking by a fresh generation of approximators/optimizers.
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[21] K. Schmüdgen. The Moment Problem. Springer, 2017.

[22] J. Sloss. Chebyshev approximation to zero. Pacific Journal of Mathematics, 15/1, 305–313,

1965.

[23] M. Tacchi. Convergence of Lasserre’s hierarchy: the general case. Optimization Letters, 16,

1015–1033, 2022.

[24] V. A. Yudin, Best approximation to monomials on a cube. Sbornik Mathematics, 199, 1251–

1262, 2008.

[25] Y. Xu. On polynomials of least deviation from zero in several variables. Experimental Mathe-

matics, 13, 103–112, 2004.

[26] Y. Xu. Best approximation of monomials in several variables. Rendiconti del Circolo Matem-

atico di Palermo Series 2, 76, 129–155, 2005.

21


	Introduction
	Prior Knowledge
	Characterization via signatures
	Simple reductions
	Known multivariate Chebyshev polynomials

	Description of the Computational Procedure
	New Explicit Results
	The euclidean ball
	The cross-polytope
	The simplex

	Conclusion

