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Abstract

Inspired by multi-fidelity methods in computer simulations, this article introduces procedures

to design surrogates for the input/output relationship of a high-fidelity code. These surrogates

should be learned from runs of both the high-fidelity and low-fidelity codes and be accompanied

by error guarantees that are deterministic rather than stochastic. For this purpose, the article

advocates a framework tied to a theory focusing on worst-case guarantees, namely Optimal

Recovery. The multi-fidelity considerations triggered new theoretical results in three scenarios:

the globally optimal estimation of linear functionals, the globally optimal approximation of

arbitrary quantities of interest in Hilbert spaces, and their locally optimal approximation, still

within Hilbert spaces. The latter scenario boils down to the determination of the Chebyshev

center for the intersection of two hyperellipsoids. It is worth noting that the mathematical

framework presented here, together with its possible extension, seems to be relevant in several

other contexts briefly discussed.

Key words and phrases: Multi-fidelity methods, Surrogate models, Optimal Recovery, Minimax

problems, Chebyshev centers.
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1 Introduction

High-fidelity computer models of complex physical systems provide some unprecedentedly detailed

insights into processes ranging from climate response to anthropogenic greenhouse gas emissions [1],

to the dynamics of turbulence and combustion of scramjets [2] and rocket motors [3], to modeling

the dynamic responses of materials to shocks [4]. These models couple elementary physical, chem-

ical, and biological processes at scale, leading to nonlinear dynamics that often reveal emergent

phenomena [5].
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The computational cost of running high-fidelity models can be prohibitively high, however, which

may limit their usefulness for some applications. Low-fidelity models of the high-fidelity codes

rely on streamlined assumptions such as linearization, lower-dimensional approximations, simpli-

fied physics, complexity management limiting the number and order of interactions, and domain

coarsening, to significantly reduce the computational burden. Multi-fidelity models [6, 7] combine

the results from both low- and high-fidelity models, using the low-fidelity ones to extensively explore

an approximation of the relationship between inputs and outputs and capitalizing on the higher

fidelity ones to finetune this relationship. We note that the notions of high-fidelity and low-fidelity

are only defined relative to one another.

Surrogate models are data-driven approximations of the relationship between inputs and outputs.

They are essential ingredients in optimization [8] and in estimation and uncertainty quantification

of computer models [9, 10]. Developing surrogate models for multi-fidelity computer models is

challenging and remains an active field of research [11, 12]. While modern machine learning methods

[13, 14, 15] have successfully combined low- and high-fidelity data, they are not well equipped to

bound the pointwise prediction error. Multi-fidelity models based on Gaussian processes [16, 17]

can provide stochastic bounds on the error. Yet, for some applications, deterministic bounds are

desirable. The theory of Optimal Recovery—the centerpiece of this article, going back to the

seventies [18]—is tailored to produce such deterministic bounds, e.g. for surrogates of computer

simulations. These bounds offer a complementary view of the uncertainty associated with the

surrogate, with a different interpretation but often similar ranges. See [19] for an example of

comparison between stochastic and deterministic uncertainty quantification.

This article contributes to the existing body of research on surrogate modeling by extending the

theory of Optimal Recovery to the design of surrogates for multi-fidelity computer simulations. The

benefit of this approach is the explicit determination of upper bounds for the error of prediction,

or even of full approximation, of the true input/output relationship by a surrogate constructed

precisely to make this error small under some prior assumption about the relationship. Thus, it

provides novel deterministic uncertainty quantification tools for multi-fidelity computer models.

In mathematical terms, let the input/output relationship for the high-fidelity code be represented

by a function f0 and let a function f1 represent this relationship for the low-fidelity code. The

prior assumption takes the form of a condition f0 ∈ K0, together with a condition f0 − f1 ∈ K1

expressing the belief that, in a multi-fidelity setting, the bias f0 − f1 should be better behaved

than f0. Executing the high- and low-fidelity codes provides the data

y0,i = λ0,i(f0), i = 1, . . . ,m0, and y1,i = λ1,i(f1), i = 1, . . . ,m1,

where the linear functionals λ0,i, λ1,i are often (but not always) point evaluations. These data serve

as constraints on the unknown functions, expressed via the sets D0 = {f : λ0,i(f) = y0,i for all i}
and D1 = {f : λ1,i(f) = y1,i for all i}. The error of full approximation, say, is obtained as the
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optimal value of the min-max program

(1) inf
h

sup{∥f0 − h∥ : f0 ∈ K0 ∩ D0, f1 − f0 ∈ K1, f1 ∈ D1},

while the minimizer h amounts to the optimal surrogate.

This formalism extends to more than two fidelity levels. Although conceptually straightforward,

such an extension introduces theoretical challenges for solving suitable generalizations of (1), so

our results primarily focus on two levels. Nonetheless, we want to make the point that the core

mathematical problem arises in contexts beyond the multi-fidelity setting considered in this paper,

and as such is of interest to a broad audience. Below is a non-exhaustive list of four examples that

can benefit from our Optimal Recovery perspective.

Accelerated life testing. Accelerated life testing subjects items to conditions that enhances the

physical and chemical processes associated with aging. For example, increasing the temperature

of explosives promotes chemical degradation. We can quantify this effect in many ways, e.g. gas

chromatography to characterize volatile and semi-volatile mixtures [20], possibly complemented

with time-of-flight mass spectroscopy [21], and ‘dynamic testing’ to measure the energetic release.

These destructive experiments capture physical and chemical characteristics that are differentially

impacted by aging. For each experiment, we are interested in learning the expected response ft(x)

to the t-th experiment, where x represents aging. The framework for Optimal Recovery in multi-

fidelity experiments applies here, allowing us to combine and learn from multiple related tests.

Multi-physics sensing. Nuclear particles, such as electrons, muons, neutrons and protons penetrate

and interact with matter in different but related ways. For example, muons and electrons interact

with matter through electro-magnetic forces (Coulomb scattering) [22, 23], whereas neutrons scatter

when colliding with the nucleus of atoms. Both of these processes are enhanced in high-Z materials

and there is interest in combining the probing ability of multiple types of particles. The presented

Optimal Recovery framework applies here, too, as we seek to learn the function ft(x, z), where x is

the spatial position in a probed object and z are characteristics of the individual particles of type t.

Panel data. Panel data consists of short time series observed on multiple individuals, with com-

mon dynamic for its temporal evolution [24], possibly depending on covariates x. For times

t = 0, 1, . . . , T , we denote by ft(x) the response at time t as a function of covariate x. The

temporal evolution of the process makes it plausible that measurements at time t may inform, or at

least bound, the measurements at time t′. That is, we can again leverage the theory in this paper

to combine data from multiple time points to estimate the dependence of the response at time t on

the covariate x, even if the measurements are from different items.

Theoretical tool for transfer learning. Transfer learning has emerged as a powerful machine-learning

paradigm to combine related yet distinct datasets, see the recent review articles [25, 26]. The

formalism in this paper provides a way to quantify the benefit of combining datasets by computing

uncertainty bound of surrogates with and without the addition of ‘related datasets’.
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2 Preliminaries, Problem Formulation, and Summary of Results

In this section, we fix the notation, introduce the concepts, and provide a self-contained overview of

Optimal Recovery, specialized to the problem of building surrogates in our multi-fidelity context. In

addition to [18], the books [27, 28] can provide the interested reader with a more modern discussion

about the theory and applications of Optimal Recovery.

In this field, the goal is to exploit the assumption that an unknown target function f0 belongs to

a given subset K0 ⊆ F of a Banach space F , together with observed constraints y0,1, . . . , y0,m0 ,

which we call data, to bound a quantity of interest Q(f0). For simplicity, the latter is taken to be

a linear map Q : F → Z into another Banach space Z. This framework includes the problem of

full approximation of the function f0 by setting Q = Id, the identify map. The Banach space F

already encapsulates some a priori assumptions about f0 and the so-called model set K0 further

reflects our educated knowledge about realistic objects.

Throughout this paper, we will suppose that the data constraints

y0,i = λ0,i(f0), i = 1, . . . ,m0,

are obtained by applying linear functionals λ0,1, . . . , λ0,m0 to f0. It is convenient to vectorize these

data and use the notation y0 = Λ0f0 = [λ0,1(f0); . . . ;λ0,m0(f0)] ∈ Rm0 and refer to Λ0 as the

observation map from F to Rm0 . A special case of particular interest is when λ0,i(f0) = f0(x
(0,i)) is

a point evaluation functional. This evokes similarities with Statistical Learning Theory. However,

the main difference is that the x(i)’s are regarded as fixed here and not as independent realizations

of a random variable. As a result, the performance of a learning/recovery procedure cannot be

assessed in an average case. Thus, one opts for an assessment focusing on the worst case, see

(2) and (3) below, which is a distinctive feature of the Optimal Recovery framework.

In our specific setting, let us recall that multi-fidelity supplies an extra dimension via some side

information on an object f1 related to f0. Indeed, the latter is available through its own a priori

assumption on the bias f0 − f1 expressed via

f0 − f1 ∈ K1.

For instance, if we have knowledge that f1 is ε-close to f0, then K1 would simply be a ball of

radius ε. As for the data constraints, they are observations made directly on f1, i.e.,

y1,i = λ1,i(f1), i = 1, . . . ,m1.

These data are again vectorized as y1 = Λ1f1, where Λ1 : F → Rm1 is a linear map1.

1Throughout this article, the maps Λ0 and Λ1 are considered fixed entities. But the question of their optimal

selection invites further investigations if these maps could be chosen freely.
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To estimate Q(f0) ∈ Z, we want to produce an approximant ẑ built from the combined data

y = [y0; y1] ∈ Rm0+m1 . In other words, we want to construct a mapping ∆ from Rm0+m1 to Z,

which we call a recovery map. Note that it may be cognizant of the model sets K0 and K1. We are

interested in optimal recovery maps, the meaning of which being tied to how the performance of

a generic ∆ is assessed. The value of ∥Q(f0) −∆(y)∥Z evidently quantifies the recovery error for

fixed f0 and f1, but since f0 and f1 are unknown, we settle on a worst-case viewpoint to quantify

performance by taking the supremum over all f0 and f1 that are consistent with model and data.

This leads to the following two notions of worst-case recovery error:

• the local worst-case error, at a fixed y = [y0; y1] ∈ Rm0+m1 and fixed z ∈ Z, is defined as

(2) lwcey(z) = sup
f0∈K0,f0−f1∈K1
Λ0f0=y0,Λ1f1=y1

∥Q(f0)− z∥Z ;

• the global worst-case error of a fixed ∆ is defined as

(3) gwce(∆) = sup
f0∈K0,f0−f1∈K1

∥Q(f0)−∆([Λ0f0; Λ1f1])∥Z .

A globally, resp. locally, optimal recovery map ∆opt : Rm0+m1 → Z is a map that minimizes

gwce(∆) over all ∆ : Rm0+m1 → Z, resp. such that ∆opt(y) minimizes lwcey(z) over all z ∈ Z at

every y ∈ Rm0+m1 . It is straightforward to see that a locally optimal recovery map2 is automatically

globally optimal, implying that globally optimal recovery maps are somewhat easier to come by

than locally optimal recovery maps. This will also be exemplified by the representative cases

investigated in the remainder of this article. Treated by increasing order of difficulty, they leverage

some techniques that have recently proved useful in Optimal Recovery. Below is an summary of

some results for the three scenarios we considered.

In the first scenario (Section 3), the quantity of interest is required to be a linear functional.

For instance, in the space F = C(X ) of continuous functions on a compact set X , suppose that

the observations λ0,i(f0) = f0(x
(0,i)) and λ1,i(f1) = f1(x

(1,i)) are point evaluations and that the

quantity of interest Q(f0) = f0(x) is the evaluation at another point x ∈ X , i.e., we are trying to

predict f0 at a new point. Suppose also that the model sets are based on approximation capabilities

by linear subspaces V0,V1 of C(X ) with paramaters ε0, ε1 > 0, i.e.,

K0 = {g ∈ C(X ) : dist(g,V0) ≤ ε0} and K1 = {g ∈ C(X ) : dist(g,V1) ≤ ε1}.

Then, a globally optimal estimation map takes the form

y = [y0; y1] ∈ Rm0+m1 7→
m0∑
i=1

aopt0,i y0,i +

m1∑
i=1

aopt1,i y1,i ∈ R,

2‘Locally optimal recovery maps’ are also called ‘strongly optimal algorithms’ in Information-Based Complexity.
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where the vector aopt = [aopt0 ; aopt1 ] ∈ Rm0 × Rm1 is solution to the ℓ1-optimization program

minimize
[a0;a1]∈Rm0+m1

[
ε0 ∥a0∥1 + (ε0 + ε1) ∥a1∥1

]
s.to M (0)[a0; a1] = b and M (1)a1 = 0

for some explicit matrices M (0),M (1), and vector b. This result is in fact an instantiation of a more

general result (Corollary 3). Indeed, in the case of estimation of a linear functional Q, the result can

be extended to any number of model sets K0,K1, . . . ,KT—which do not need to be approximability

sets either—and therefore apply to the four examples mentioned in the introduction. This extension

can also be viewed as a first step towards a ‘dynamical Optimal Recovery’, where the object of

interest is some time-varying ft initially modeled by f0 ∈ K0 and whose evolution is modeled

by ft−1 − ft ∈ Kt, t ≥ 1. As a stylized example, we are thinking of the estimation of average

temperatures at a past time t = 0 given observations at this time t = 0 and at subsequent times

t ≥ 1. For this climate application, the use of Optimal Recovery in the ‘static’ framework was

proposed in [29].

In the second scenario (Section 4), there is no restriction on the quantity of interest Q : F → Z

(except that it is a linear map), but there are restrictions on the spaces F and Z, namely, they

should be Hilbert spaces. Thus, when the objects f0 and f1 are functions observed via point

evaluations, reproducing kernel Hilbert spaces provide the right framework. For arbitrary linear

observation maps Λ0 : F → Rm0 and Λ1 : F → Rm1 , suppose that the model sets are given by

K0 = {g ∈ F : ∥P0g∥ ≤ ε0} and K1 = {g ∈ F : ∥P1g∥ ≤ ε1},

where the linear operators P0, P1 map into Hilbert spaces, too. Then, a globally optimal recovery

map is produced by constrained regularization with an explicitly determined parameter. Precisely,

it is obtained as Q ◦∆τ ♯ : Rm0+m1 → Z, where ∆τ is defined for τ ∈ [0, 1] by ∆τ ([y0; y1]) = f τ
0 ∈ F

and

[f τ
0 ; f

τ
1 ] = argmin

f=[f0;f1]∈F×F

[
(1− τ)∥P0f0∥2 + τ∥P1(f0 − f1)∥2

]
s.to Λ0f0 = y0, Λ1f1 = y1.

As for the parameter τ ♯ ∈ [0, 1], it is selected as τ ♯ = c♯1/(c
♯
0 + c♯1), where c♯0, c

♯
1 ≥ 0 are solutions to

the semidefinite program

minimize
c0,c1≥0

c0ε
2
0 + c1ε

2
1

s.to c0∥P0f0∥2 + c1∥P1(f0 − f1)∥2 ≥ ∥Qf0∥2 for all f0 ∈ ker(Λ0), f1 ∈ ker(Λ1).

This statement, exploiting a recent result from [30], does not extend to any number of model

sets. This is because the underlying tool—Polyak’s S-procedure, see [31]—is similarly limited in

the number of quadratic constraints it can handle. Beyond the multi-fidelity setting, situations

that seem pertinent to this scenario involve destructive observations. As a stylized example, we

can consider f0 as a graph signal, i.e., a function defined on the finitely many vertices of a graph,

whence it is relevant to take the operator P0 describing K0 as the square-root of the graph Laplacian.
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We can also imagine that the very fact of observing f0 is destructive, in the sense that it alters f0
into a closeby f1, whence it is relevant to take the operator P1 as the identity. In a non-destructive

framework, the graph-signal application of Optimal Recovery was proposed in [32].

In the third scenario (Section 6), the setting is similar to the one from the second scenario, except

that a locally optimal recovery map is targeted instead of a globally optimal one. In the spirit

of [33], which extended the result from [34] to an arbitrary linear quantity of interest Q ̸= Id, we

first show that the minimal local worst-case error (aka local radius of information or Chebyshev

radius) is upper bounded by the square root of the optimal value of the semidefinite program

minimize
b,c0,c1≥0

c0
(
ε20 − ∥P0Λ

†
0y0∥

2
)
+ c1

(
ε21 − ∥P1(Λ

†
0y0 − Λ†

1y1)∥
2
)
+ b(4)

s.to

[
c0M0 + c1M1 −c1M1

−c1M1 c1M1

]
⪰

[
N0 0

0 0

]

and

 c0M0 + c1M1 −c1M1 c0L0y0 + c1L1y

−c1M1 c1M1 −c1L1y

(c0L0y0 + c1L1y)
∗ −(c1L1y)

∗ b

 ⪰ 0,

where L0, L1,M0,M1 are expressed in terms of P0, P1,Λ0,Λ1, while N0 is expressed in terms of

Q,Λ0. Next, we show that this upper bound can actually be equal to the genuine minimal local

worst-case error under some additional assumptions, e.g. ker(Λ0) ⊆ ker(P1) or ker(Λ0) ⊆ ker(Λ1).

The locally optimal recovery map is still produced by constrained regularization: it takes the form

Q◦∆τy , where the parameter τy ∈ [0, 1] now depends on y via τy = cy1/(c
y
0+ cy1), with by, cy0, c

y
1 ≥ 0

being solutions to (4). Beyond the multi-fidelity setting, we can envisage a stylized example in

which f0 represents a physical entity and f1 represents its digital twin. The observation functionals

λ1,i’s are chosen among the λ0,i’s—hence ensuring that ker(Λ0) ⊆ ker(Λ1)—for the purpose of

confirming that f1 is a convincing twin of f0.

The third scenario directly relies on more general results about Chebyshev radii and centers for

a model set given by the intersection of two hyperellipsoids. We isolate these seemingly novel

results in Section 5. Not only do they supply alternative—and arguably simpler (compare to [35])—

arguments for the exact determination of other Chebyshev centers, but they also provide a necessary

and sufficient orthogonality condition for a semidefinite-relaxation upper bound to agree with the

true Chebyshev radius. We refer to Theorem 5 for the precise statement.

3 Globally Optimal Estimation of Linear Functionals

This section deals with the first scenario, where the quantity of interest Q is a linear functional

defined on an arbitrary Banach space F . Exploiting the classical theory of Optimal Recovery, we

can swiftly guarantee that, under reasonable assumptions, there is a globally optimal recovery map
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which is linear. Our main focus will be on the efficient construction of such a map. We shall

do so in an extended framework where more than two model sets can be involved. Namely, the

object f0 comes with related objects f1, . . . , fT , which altogether are available through the model

assumptions

f0 ∈ K0, ft−1 − ft ∈ Kt, t = 1, . . . , T,

as well as the observed data

y0 = Λ0f0 ∈ Rm0 , yt = Λtft ∈ Rmt , t = 1, . . . , T.

To simplify our analysis, it is useful to reduce this extended framework to a more familiar one by

considering the compound vector

f =


f0

f1
...

fT

 ∈ F T+1.

The model assumptions on this vector simply become f ∈ K, where

K =




f0

f1
...

fT

 ∈ F T+1 : f0 ∈ K0, ft−1 − ft ∈ Kt, t = 1, . . . , T

 ,

while the observed data takes the condensed form, with m := m0 +m1 + · · ·+mT ,

y = Λf ∈ Rm, where y =


y0

y1
...

yT

 and Λ =


Λ0 0 · · · 0

0 Λ1
...

...
. . . 0

0 · · · 0 ΛT

 .

This notation allows us to write the worst-case errors of a recovery map ∆ : Rm → R in the simpler

form

(5) gwce(∆) = sup
f∈K

∣∣Q̃(f)−∆(Λf)
∣∣,

where Q̃ : F T+1 → R is the linear functional defined by Q̃([f0; f1; . . . ; fT ]) = Q(f0). This reduction

facilitates the derivation of the following abstract statement, soon to be specialized in more tangible

situations.

Theorem 1. Suppose that the model sets K0,K1, . . . ,KT are symmetric and convex. If the quantity

of interest Q is a linear functional, then a globally optimal recovery map is given by

∆opt : y = [y0; y1; . . . ; yT ] ∈ Rm 7→
m0∑
i=1

aopt0,i y0,i +

T∑
t=1

mt∑
i=1

aoptt,i yt,i ∈ R,
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where the vector aopt = [aopt0 ; aopt1 ; . . . ; aoptT ] ∈ Rm is a solution to

minimize
a=[a0;a1;...;aT ]∈Rm

sup
g0∈K0

∣∣∣∣∣
(
Q−

T∑
t=0

mt∑
i=1

at,iλt,i

)
(g0)

∣∣∣∣∣+
T∑

s=1

sup
gs∈Ks

∣∣∣∣∣
(

T∑
t=s

mt∑
i=1

at,iλt,i

)
(gs)

∣∣∣∣∣ .(6)

Proof. Given that K0,K1, · · · ,KT ⊆ F are all symmetric and convex, so is K ⊆ F T+1. Moreover,

Q being a linear functional, Q̃ is also a linear functional. Thus, according to the reformulation (5)

of the global worst-case error, the foundational result of Smolyak (see e.g. [27, Theorem 4.7] or [28,

Theorem 9.3]) ensures that, among the recovery maps miminizing gwce(∆), there exists one which

is linear, say of the form ∆a = ⟨a, ·⟩, i.e., ∆a([y0; y1; . . . ; yT ]) =
∑m0

i=1 a0,iy0,i +
∑T

t=1

∑mt
i=1 at,iyt,i.

To find a globally optimal recovery map, it is therefore enough to minimize gwce(∆a) over all

a = [a0; a1; . . . ; aT ] ∈ Rm. Coming back to the original formulation of the global worst-case error

and substituting the specific form of ∆a, we obtain

gwce(∆a) = sup
f0∈K0

ft−1−ft∈Kt,t=1,...,T

∣∣∣∣∣Q(f0)−

(
m0∑
i=1

a0,iλ0,i(f0) +

T∑
t=1

mt∑
i=1

at,iλt,i(ft)

)∣∣∣∣∣
= sup

f0∈K0
ft−1−ft∈Kt,t=1,...,T

∣∣∣∣∣
(
Q−

T∑
t=0

mt∑
i=1

at,iλt,i

)
(f0) +

(
T∑
t=1

mt∑
i=1

at,iλt,i

)
(f0 − ft)

∣∣∣∣∣ .
Introducing temporarily µ := Q−

∑T
t=0

∑mt
i=1 at,iλt,i and νt :=

∑mt
i=1 at,iλt,i for t = 1, . . . , T , while

writing g0 = f0 and gs = fs−1 − fs for s = 1, . . . , T , the quantity inside the absolute values is

µ(g0) +
T∑
t=1

νt

(
t∑

s=1

gs

)
= µ(g0) +

T∑
s=1

(
T∑
t=s

νt

)
(gs).

Therefore, we arrive at

gwce(∆a) = sup
g0∈K0

gs∈Ks,s=1,...,T

∣∣∣∣∣µ(g0) +
T∑

s=1

(
T∑
t=s

νt

)
(gs)

∣∣∣∣∣ = sup
g0∈K0

|µ(g0)|+
T∑

s=1

sup
gs∈Ks

∣∣∣∣∣
(

T∑
t=s

νt

)
(gs)

∣∣∣∣∣ ,
where the last step relied on the symmetry of K0,K1, . . . ,KT to transform the absolute value of the

sum into the sum of absolute values before decoupling the suprema. Taking the defining expression

of µ, ν1, . . . , νT into account finally leads to gwce(∆a) being equal to the objective function of (6).

The announced result is consequently justified.

To make things less abstract, we now introduce some particular model sets K0,K1, . . . ,KT based on

approximation capabilities by linear subspaces V0,V1, . . . ,VT of F with parameters ε0, ε1, . . . , εT >0.

As such, let us consider

(7) Kt = {g ∈ F : dist(g,Vt) ≤ εt}, t = 0, 1, . . . , T.
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For instance, if Vt = {0} for t = 1, . . . , T , then the conditions ft−1 − ft ∈ Kt simply mean that

∥ft−1 − ft∥ ≤ εt, i.e., that ft−1 and ft are εt-close. Moreover, the condition f0 ∈ K0 means that

f0 is ε0-close to being in the space V0. Such an assumption is made implicitly in many numerical

procedures, e.g. when devising quadrature formulas that are exact on a space of polynomials and

whose accuracy depends on how close the function to integrate is from a polynomial. Note that, as

in the classical case where K1, . . . ,KT are absent, to avoid infinite worst-case errors, it is assumed

from the outset that

V0 ∩ ker(Λ0) = {0}, so that n0 := dim(V0) ≤ m0.

With the above approximability sets K0,K1, . . . ,KT , Theorem 1 becomes the following statement.

Theorem 2. Suppose that K0,K1, . . . ,KT are the approximability sets defined in (7). If the

quantity of interest Q is a linear functional, then a globally optimal recovery map is given by

∆opt : y = [y0; y1; . . . ; yT ] ∈ Rm 7→
m0∑
i=1

aopt0,i y0,i +

T∑
t=1

mt∑
i=1

aoptt,i yt,i ∈ R,

where the vector aopt = [aopt0 ; aopt1 ; . . . ; aoptT ] ∈ Rm is a solution to

minimize
a=[a0;a1;...;aT ]∈Rm

[∥∥∥∥∥Q−
T∑
t=0

mt∑
i=1

at,iλt,i

∥∥∥∥∥
∗

× ε0 +
T∑

s=1

∥∥∥∥∥
T∑
t=s

mt∑
i=1

at,iλt,i

∥∥∥∥∥
∗

× εs

](8)

s.to

(
T∑
t=0

mt∑
i=1

at,iλt,i −Q

)
|V0

= 0 and

(
T∑
t=s

mt∑
i=1

at,iλt,i

)
|Vs

= 0 for all s = 1, . . . , T.(9)

Proof. The quantity to minimize in (6) is made of several suprema, each supremum taking the

form S = supg∈F {|η(g)| : dist(g,V) ≤ ε} for some linear functional η, linear subspace V ⊆ F , and

parameter ε > 0. Here, the constraint dist(g,V) ≤ ε is equivalent to the existence of v ∈ V such

that h := g − v ∈ F satisfies ∥h∥ ≤ ε. It follows that the supremum S can be written as

S = sup
h∈F
v∈V

{|η(h+ v)| : ∥h∥ ≤ ε} = sup
h∈F
{|η(h)| : ∥h∥ ≤ ε}+ sup

v∈V
{|η(v)|}

=

{
+∞ in case η(v) ̸= 0 for some v ∈ V,
∥η∥∗ × ε in case µ(v) = 0 for all v ∈ V.

Since we are interested in minimizing S, we must place ourselves in the latter case and impose

the constraint η|V = 0. Substituting the detailed expression of η for each supremum yields the

announced result.

Still, it is not apparent that Theorem 2 leads to an efficient construction of the vector aopt because

the dual norm on F may not be fitted for computations. For this to happen, we need to deal with

10
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spaces F on a case-to-case basis. For illustration, we shall take F = C(X ), the space of continuous

functions on a compact set X , equipped with the norm ∥g∥ = max{|g(x)|, x ∈ X}. As observation
functionals, we select point evaluations, i.e., λt,i = δx(t,i) , at points x(t,i) that are all distinct. Thus,

if Q(f0) = f0(x) for some x ̸∈ {x(t,i), t = 0, 1, . . . , T, i = 1, . . . ,mt} or Q(f0) = vol(X )−1
∫
X f0(x)dx,

we can easily see (using Tietze extension theorem) that∥∥∥∥∥Q−
T∑
t=0

mt∑
i=1

at,iλt,i

∥∥∥∥∥
∗

= 1 +

T∑
t=0

mt∑
i=1

|at,i|,

∥∥∥∥∥
T∑
t=s

mt∑
i=1

at,iλt,i

∥∥∥∥∥
∗

=

T∑
t=s

mt∑
i=1

|at,i|, s = 1, . . . , T.

With (vt,1, . . . , vt,nt) denoting bases for Vt, t = 0, 1, . . . , T , we introduce the vector b ∈ Rn0 and the

matrices M (s) ∈ Rns×(ms+···+mT ), s = 0, 1, . . . , T , with entries

bj = v0,j(x) and M
(s)
j,(t,i) = vs,j(x

(t,i)).

With this notation in place, we can now state the following instantiation of Theorem 2, whose

careful verification is left to the reader.

Corollary 3. Suppose that K0,K1, . . . ,KT ⊆ C(X ) are the approximability sets defined in (7).

If the observation functionals λt,i are evaluations at points x(t,i) ∈ X that are all distinct, then a

globally optimal recovery map for the evaluation of f0 at new x ∈ X is given by

∆opt : y = [y0; y1; . . . ; yT ] ∈ Rm 7→
m0∑
i=1

aopt0,i y0,i +
T∑
t=1

mt∑
i=1

aoptt,i yt,i ∈ R,

where aopt = [aopt0 ; aopt1 ; . . . ; aoptT ] ∈ Rm is a solution to

minimize
[a0;a1;...;aT ]∈Rm

T∑
t=0

(ε0+ · · ·+εt)∥at∥1 s.to M (0)[a0; . . . ; aT ] = b, M (s)[as; . . . ; aT ] = 0, s = 1, . . . , T.

It is worth mentioning that the above optimization program—a weighted ℓ1-minimization—can be

recast as a standard-form linear program. Furthermore, by freezing a1, . . . , aT to their optimal

values, we obtain a standard-form linear program with n0 equality constraints in the variable

a0 ∈ Rm0 , so one can output (e.g. by the simplex algorithm) a solution aopt0 ∈ Rm0 which is

n0-sparse. Since the latter can be precomputed offline before the data y ∈ Rm are collected, it

becomes unnecessary to collect the y0,i’s for i ̸∈ supp(aopt0 ). This is potentially significant because

the high-fidelity functionals λ0,i are typically expensive to evaluate.

4 Globally Optimal Recovery in Hilbert Spaces

This section deals with the second scenario, where the quantity of interest is an arbitrary linear

map Q : F → Z—it is not restricted to be a functional anymore—but F and Z are restricted to

11
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be Hilbert spaces. In close adherence to our multi-fidelity model, there are only two model sets K0

and K1 here. The latter are hyperellipsoids, i.e., they have the form

(10) K0 = {g ∈ F : ∥P0g∥ ≤ ε0} and K1 = {g ∈ F : ∥P1g∥ ≤ ε1},

where the linear operators P0 and P1 also map into Hilbert spaces. Note that the approximability

sets introduced in (7) are covered in this setting, as it suffices to choose P0 = PV⊥
0

and P1 = PV⊥
1
,

i.e., the orthogonal projectors onto the orthogonal complements of V0 and V1, respectively. For the
full recovery problem, i.e., when Q = IdF , it is arguably natural to try and estimate the original

f0 by a constrained regularizer, namely by the element f τ
0 obtained via

[f τ
0 ; f

τ
1 ] := argmin

[f0;f1]∈F×F

[
(1− τ)∥P0f0∥2 + τ∥P1(f0 − f1)∥2

]
s.to Λ0f0 = y0, Λ1f1 = y1

for some parameter τ ∈ [0, 1]. Rather than tuning this parameter by, say, cross-validation, we

shall uncover a principled way of selecting the optimal τ . By doing so, we will also guarantee that

the associated constrained regularization map is globally optimal, even among all possible recovery

maps. The theorem stated below, which extends to the estimation of other quantities of interest

besides Q = IdF , follows from a recent result derived in [30, Section 2] on Optimal Recovery with

a two-hyperellipsoid-intersection model set. The key is to reduce our multi-fidelity setting to this

related setting, in the spirit of Section 3. Specifically, we reformulate the global worst-case error of

any ∆ : Rm0+m1 → Z as

(11) gwce(∆) := sup
∥P0f0∥≤ε0

∥P1(f0−f1)∥≤ε1

∥Q(f0)−∆([Λ0f0; Λ1f1])∥Z = sup
∥Rf∥≤1
∥Sf∥≤1

∥Q̃(f)−∆(Λf)∥Z ,

where f ∈ F × F denotes again the compound vector

f =

[
f0

f1

]
,

and where the Hilbert-valued linear maps R, S, Λ, and Q̃ are defined on F × F by

(12) R(f) =
1

ε0
P0(f0), S(f) =

1

ε1
P1(f0 − f1), Λf =

[
Λ0f0

Λ1f1

]
, Q̃(f) = Q(f0).

To avoid infinite worst-case errors, it is assumed from now on that

ker(R) ∩ ker(S) ∩ ker(Λ) = {0},

or, when dim(F ) = ∞, that there is δ > 0 such that max{∥Rh∥, ∥Sh∥} ≥ δ∥h∥ for all h ∈ ker(Λ).

In terms of our multi-fidelity framework, this reads

(13) [P0(f0) = 0, P1(f0 − f1) = 0, Λ0(f0) = 0, Λ1(f1) = 0] =⇒ [f0 = 0, f1 = 0].

In the cases ker(Λ0) ⊆ ker(P1) and ker(Λ0) ⊆ ker(Λ1) featured in Section 6, it can be verified that

(13) holds if and only if both ker(P0) ∩ ker(Λ0) = {0} and ker(P1) ∩ ker(Λ1) = {0} hold.

12
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Theorem 4. Suppose that F is a Hilbert space and that the model sets K0,K1 ⊆ F are the

hyperellipsoidal sets defined in (10). If the linear quantity of interest Q : F → Z maps into a

Hilbert space, then a globally optimal recovery map is given by ∆opt : y ∈ Rm0+m1 7→ Q(f τ ♯
0 ) ∈ Z,

where

[f τ ♯

0 ; f τ ♯

1 ] = argmin
f=[f0;f1]∈F×F

[
(1− τ ♯)∥P0f0∥2 + τ ♯∥P1(f0 − f1)∥2

]
s.to Λ0f0 = y0, Λ1f1 = y1.

Here, the regularization parameter is τ ♯ = c♯1/(c
♯
0 + c♯1), with c♯0, c

♯
1 ≥ 0 being a solution to

minimize
c0,c1≥0

[c0ε
2
0 + c1ε

2
1](14)

s.to c0∥P0f0∥2 + c1∥P1(f0 − f1)∥2 ≥ ∥Qf0∥2 for all f0 ∈ ker(Λ0), f1 ∈ ker(Λ1).

Proof. According to the reformulation (11) of the global worst-case error of ∆ : Rm0+m1 → Z and

invoking [30, Theorem 1], we know that an optimal recovery map is given by ∆opt = Q̃ ◦ ∆a♯,b♯ ,

where

∆a♯,b♯ : y ∈ Rm0+m1 7→
(
argmin
f∈F×F

a♯∥Rf∥2 + b♯∥Sf∥2 s.to Λf = y

)
∈ F × F,

and where a♯, b♯ ≥ 0 are solutions to

minimize
a,b≥0

(a+ b) s.to a∥Rf∥2 + b∥Sf∥2 ≥ ∥Q̃f∥2 for all f ∈ kerΛ.

Making the change of optimization variables c0 = a/ε20 and c1 = b/ε21 while taking the expressions of

R, S, Λ, and Q̃ into account, we immediately see that the latter program reduces to (14). Likewise,

we see that ∆a♯,b♯(y) =: [f ♯
0; f

♯
1] reduces to the minimizer of c♯0∥P0f0∥2 + c♯1∥P1(f0 − f1)∥2—or

equivalently of (1 − τ ♯)∥P0f0∥2 + τ ♯∥P1(f0 − f1)∥2—subject to Λ0f0 = y0 and Λ1f1 = y1, i.e.,

[f ♯
0, f

♯
1] = [f τ ♯

0 , f τ ♯
1 ], so that ∆opt(y) = Q̃([f τ ♯

0 , f τ ♯
1 ]) = Q(f τ ♯

0 ), as announced.

Remark. Here are a few comments to put the theoretical results of Theorem 4 into perspective.

a) Although not obvious at first sight, the optimal recovery map ∆opt = Q̃◦∆a♯,b♯ is linear. Indeed,

the map ∆a♯,b♯ can be expressed (see [30, Subsection 2.1]) as

∆a♯,b♯ = Λ† −
[
a♯R∗

NRN + b♯S∗
NSN

]−1(
a♯R∗

NR+ b♯S∗
NS
)
Λ†,

where RN and SN denote the restrictions of R and S to N = ker(Λ).

b) Theorem 4 is valid for dim(F ) =∞ (since the underpinning result from [30] is), but it is in finite

dimensions that (14) becomes a manageable semidefinite program. Indeed, if (h01, . . . , h
0
k0
) and

(h11, . . . , h
1
k1
) are bases for ker(Λ0) and ker(Λ1) and ifH0 : Rk0 → ker(Λ0) andH1 : Rk1 → ker(Λ1)

represent the transformations defined by H0(u) =
∑k0

i=1 uih
0
i and H1(v) =

∑k1
i=1 vih

1
i , then we

13
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can reformulate the constraint c0∥P0f0∥2 + c1∥P1(f0 − f1)∥2 ≥ ∥Qf0∥2 for all f0 ∈ ker(Λ0) and

f1 ∈ ker(Λ1) as [
H∗

0 (c0P
∗
0P0 + c1P

∗
1P1 −Q∗Q)H0 H∗

0 (c1P
∗
1P1)H1

H∗
1 (c1P

∗
1P1)H0 H∗

1 (c1P
∗
1P1)H1

]
⪰ 0.

Note that the square matrix above has size k0+ k1 ≥ 2 dim(F )−m0−m1, independently of the

dimension of Z. Intuitively, if Z is low dimensional, e.g. Z = R when Q is a linear functional,

then we should be able to lower the computational cost of producing an optimal recovery map,

but this does not follow from Theorem 4.

c) Theorem 4 substantially relies on a result from [30], itself relying on the so-called S-procedure,

and in particular on its ‘no-linear-term’ version. Loosely speaking, given quadratic functions

q0, q1, . . . , qK on Kn, the S-procedure—which is surveyed in [36]—relates the condition [q0(x) ≤ 0

whenever q1(x) ≤ 0, . . . , qK(x) ≤ 0] to the condition of existence of c1, . . . , cK ≥ 0 such that

q0 ≤ c1q1 + · · ·+ cKqK . Clearly, the latter condition always implies the former condition. The

S-procedure is said to be exact if, conversely, the former implies the latter. Exactness occurs,

under some strict feasibility conditions, when K = 1 (this is Yakubovich’s S-Lemma) and when

K = 2 if K = C (see [37]). It also occurs when K = 2 if K = R provided the quadratic

functions are all of the form qk(x) = ⟨Akx, x⟩ + αk, i.e., they do not feature any linear term

⟨ak, x⟩. Established by Polyak in [31], this is what we called the ‘no-linear-term’ S-procedure.

Not only is this version generally invalid for K > 2, but the result from [30] is invalid, too, when

more than two hyperellipsoidal model sets are involved. Consequently, unless a more restrictive

setting is enforced, we cannot extend Theorem 4 to the situation considered in Section 3, where

we dealt with model sets K0,K1, . . . ,KT with T > 1.

5 Chebyshev Center for the Intersection of Two Hyperellipsoids

Still within Hilbert spaces, our next goal is to tackle the more subtle problem of local optimality.

As was just made apparent in the global setting, our multi-fidelity model is tied to the two-

hyperellipsoid-intersection model, so we start with some investigations about this general model,

bearing in mind that the local setting was not considered in [30]. Readers mainly interested in the

multi-fidelity aspect can skip to Section 6 and bypass the technicalities of the present section. Here,

we deal with Hilbert-valued linear maps R, S, Λ, and Q̃ which are defined on a common Hilbert

space F and which do not have to be taken as in (12). Fixing y ∈ ran(Λ), we aim at minimizing

over all z the local worst-case error

lwcey(z) = sup
∥Rf∥≤1,∥Sf∥≤1

Λf=y

∥Q̃(f)− z∥.

In other words, we are looking for a Chebyshev center of the linear image of a sliced intersection

of two hyperellispoids, namely for a center zopt of a ball with smallest radius that contains the
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set Q̃({f ∈ F : ∥Rf∥ ≤ 1, ∥Sf∥ ≤ 1,Λf = y}). In this situation, classical results guarantee

the existence and uniqueness of such a Chebyshev center. However, determining the Chebyshev

center/radius is an arduous task in general. In the closely related problem of Optimal Recovery

from inaccurate data, a semidefinite-programming-based upper bound for the Chebyshev radius was

proposed in [34] when Q = IdF , along with a candidate Chebyshev center. The genuine Chebyshev

center was obtained more directly in [35] but under a specific assumption and still when Q = IdF .

It was later observed that the aforementioned candidate and genuine Chebyshev centers actually

coincide, see [33]. There, the upper bound was also generalized to linear quantities of interest

Q ̸= IdF . All these findings can now be retrieved from the theorem below. It consists of three parts:

the first part provides a computable upper bound for the Chebyshev radius (incidentally involving

constrained regularizers); the second part uncovers an orthogonality condition under which this

upper bound agrees with the true Chebyshev radius; the third part shows conversely that the

upper bound and the true Chebyshev radius can only be equal under this orthogonality condition.

The precise statement of the theorem involves the following notation to be used throughout this

section: given y ∈ ran(Λ) and τ ∈ [0, 1],

• f τ ∈ F is the constrained minimizer defined as

f τ := argmin
f∈F

[
(1− τ)∥Rf∥2 + τ∥Sf∥2

]
s.to Λf = y;

• λ(τ) denotes the largest eigenvalue of [(1− τ)R∗
NRN + τS∗

NSN ]−1Q̃∗
N Q̃N , N := ker(Λ), i.e.,

λ(τ) := λmax([(1− τ)R∗
NRN + τS∗

NSN ]−1Q̃∗
N Q̃N );

• hτ ∈ N is defined implicitely via an eigenequation and a normalization, namely

Q̃∗
N Q̃Nhτ = λ(τ)[(1− τ)R∗

NRN + τS∗
NSN ]hτ ,

∥Q̃hτ∥2 = λ(τ)×
(
1− ((1− τ)∥Rf τ∥2 + τ∥Sf τ∥2)

)
.

The three-part theorem, whose upcoming proof is technically involved, reads as follows.

Theorem 5. Let R,S, Q̃ be Hilbert-valued linear maps defined on a common Hilbert space F . Let

also Λ : F → Rm be another linear map and let y ∈ Rm.

(i) The squared Chebyshev radius ρ2 of the set Q̃({f ∈ F : ∥Rf∥ ≤ 1, ∥Sf∥ ≤ 1,Λf = y}) is

upper-bounded as

ρ2 ≤ inf
τ∈[0,1]

sup
∥Rf∥≤1,∥Sf∥≤1

Λf=y

∥Q̃(f)− Q̃(f τ )∥2 ≤ inf
τ∈[0,1]

∥Q̃hτ∥2.

(ii) For the minimizer τy of ∥Qhτ∥2 over τ ∈ [0, 1], if the orthogonality condition

(15) ⟨Rf τy , Rhτ
y⟩ = 0 and/or ⟨Sf τy , Shτ

y⟩ = 0

15



Worst-Case Learning under a multi-fidelity Model

holds, then the squared Chebyshev radius agrees with the upper bound, i.e.,

(16) ρ2 = ∥Q̃hτ
y∥2 = inf

τ∈[0,1]
∥Q̃hτ∥2.

(iii) Conversely, if the equality (16) between squared Chebyshev radius and upper bound occurs,

then the orthogonality condition (15) holds.

Each part of the theorem will be proved separately. For the first part, we make use of the following

lemma, which provides a fresh look at the one-hyperellipsoid model. The result was obtained in

[38] when T = PV⊥ is the orthogonal projector onto the orthogonal complement of a linear space

V ⊆ F and when Q = IdF , in which case the largest eigenvalue in the statement below reduces to

1/σmin(TN )2. When T = PV⊥ but Q ̸= IdF , it can also be found as [28, Theorem 10.2], albeit with

the largest eigenvalue expressed in a different manner.

Lemma 6. Let T, Q̃ be Hilbert-valued linear maps defined on a common Hilbert space F . Let

also Λ : F → Rm be another linear map whose null space N = ker(Λ) satistfies ker(T ) ∩ N = {0}.
Given y ∈ Rm, the Chebyshev center of the set Q̃({f ∈ F : ∥Tf∥ ≤ 1,Λf = y}) is Q̃(f̂), where

f̂ := argmin
f∈F

∥Tf∥2 s.to Λf = y

and its squared Chebyshev radius is equal to

(17) ∥Q̃ĥ∥2 = λmax

(
[T ∗

NTN ]−1Q̃∗
N Q̃N

)
×
(
1− ∥T f̂∥2

)
,

where ĥ ∈ N is a leading eigenvector of [T ∗
NTN ]−1Q̃∗

N Q̃N normalized so that ∥T ĥ∥2 = 1− ∥T f̂∥2.

Proof. Let us first quickly justify the equality in (17), which relies on the properties of ĥ via

∥Q̃ĥ∥2 = ⟨Q̃∗
N Q̃N ĥ, ĥ⟩ = ⟨[T ∗

NTN ]−1Q̃∗
N Q̃N ĥ, [T ∗

NTN ]ĥ⟩ = ⟨λmax([T
∗
NTN ]−1Q̃∗

N Q̃N ) ĥ, [T ∗
NTN ]ĥ⟩

= λmax([T
∗
NTN ]−1Q̃∗

N Q̃N )× ∥T ĥ∥2 = λmax([T
∗
NTN ]−1Q̃∗

N Q̃N )×
(
1− ∥T f̂∥2

)
.

The equality in (17) being put aside, our remaining objective is to prove that, for any z ∈ ran(Q̃),

(18) sup
∥Tf∥2≤1
Λf=y

∥Q̃f − z∥2 ≥ sup
∥Tf∥2≤1
Λf=y

∥Q̃f − Q̃f̂∥2 = ∥Q̃ĥ∥2.

We start with the equality on the right of (18). To this end, it is crucial to observe that f̂ is

characterized by Λf̂ = y and ⟨T f̂ , Th⟩ = 0 for all h ∈ N , the latter property stemming from

∥T f̂∥2 ≤ ∥T (f̂ + h)∥2 for all h ∈ N . Thus, reparametrizing any f ∈ F such that Λf = y as

f = f̂ + h with h ∈ N , we see that the constraint ∥Tf∥2 ≤ 1, i.e., ∥T (f̂ + h)∥2 ≤ 1, is equivalent

to ∥T f̂∥2 + ∥Th∥2 ≤ 1. Therefore,

sup
∥Tf∥2≤1
Λf=y

∥Q̃f − Q̃f̂∥2 = sup
∥Th∥2≤1−∥T f̂∥2

h∈N

∥Q̃h∥2.
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At this point, we claim that the latter supremum is equal to ∥Q̃ĥ∥2. Indeed, for any h ∈ N
satisfying ∥Th∥2 ≤ 1 − ∥T f̂∥2, by introducing u := [T ∗

NTN ]1/2h ∈ N and using the shorthand

λmax := λmax

(
[T ∗

NTN ]−1Q̃∗
N Q̃N

)
= λmax

(
[T ∗

NTN ]−1/2Q̃∗
N Q̃N [T ∗

NTN ]−1/2
)
, we remark that

∥Q̃h∥2 = ⟨Q̃∗
N Q̃Nh, h⟩ = ⟨[T ∗

NTN ]−1/2Q̃∗
N Q̃N [T ∗

NTN ]−1/2u, u⟩

≤ λmax × ∥u∥2 = λmax × ∥Th∥2 ≤ λmax ×
(
1− ∥T f̂∥2

)
,

with equality occurring throughout if and only if [T ∗
NTN ]−1/2Q̃∗

N Q̃N [T ∗
NTN ]−1/2u = λmax u, i.e.,

Q̃∗
N Q̃Nh = λmax [T

∗
NTN ]h, and ∥Th∥2 = 1−∥T f̂∥2— in short, if and only if h equals (one of the) ĥ.

Continuing with the inequality on the left of (18), let us consider any z ∈ ran(Q̃). By noticing that

∥T (f̂ ± ĥ)∥2 = 1 and that Λ(f̂ ± ĥ) = y, we obtain

sup
∥Tf∥2≤1
Λf=y

∥Q̃f − z∥2 ≥ max
±
∥Q̃(f̂ ± ĥ)− z∥2 ≥ 1

2
∥Q̃f̂ − z + Q̃ĥ∥2 + 1

2
∥Qf̂ − z − Q̃ĥ∥2

= ∥Q̃f̂ − z∥2 + ∥Q̃ĥ∥2 ≥ ∥Q̃ĥ∥2,

which is the desired inequality. The proof is now complete.

Proof of Theorem 5, Part (i). For a fixed τ ∈ [0, 1], the squared Chebyshev radius ρ2, i.e., the

squared minimal local worst-case error, is evidently upper-bounded by the squared local worst-case

error evaluated at Q̃(f τ ). We bound the latter as

sup
∥Rf∥2≤1,∥Sf∥2≤1

Λf=y

∥Q̃(f)− Q̃(f τ )∥2 ≤ sup
(1−τ)∥Rf∥2+τ∥Sf∥2≤1

Λf=y

∥Q̃(f)− Q̃(f τ )∥2.

If we set T := [(1− τ)R∗R + τS∗S]1/2, so that ∥Tf∥2 = (1− τ)∥Rf∥2 + τ∥Sf∥2 for all f ∈ F , we

can invoke Lemma 6—and its proof, see (18) in particular—to state that the latter supremum is

equal to ∥Q̃ĥ∥2, where ĥ is easily identified in our context with hτ . We have therefore obtained

ρ2 ≤ sup
∥Rf∥2≤1,∥Sf∥2≤1

Λf=y

∥Q̃(f)− Q̃(f τ )∥2 ≤ ∥Q̃hτ∥2.

The required result simply follows by taking the infimum over τ ∈ [0, 1].

We now turn to the second part of the theorem, for which it is worth isolating another lemma.

After uncovering the derivatives of some τ -dependent quantities, the lemma brings forward a crucial

piece of information about the minimizer τy of ∥Qhτ∥2.

Lemma 7. The derivatives of the functions G and H defined below are

if G(τ) := (1− τ)∥Rf τ∥2 + τ∥Sf τ∥2, then G′(τ) = ∥Sf τ∥2 − ∥Rf τ∥2,

if H(τ) := 1/λ(τ), then H ′(τ) =
∥Shτ∥2 − ∥Rhτ∥2

∥Q̃hτ∥2
.
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As a consequence, the minimizer τy ∈ (0, 1) of ∥Qhτ∥2 satisfies

∥Rf τy∥2 + ∥Rhτ
y∥2 = ∥Sf τy∥2 + ∥Shτy∥2 = 1.

Proof. For σ, τ ∈ [0, 1], the minimality property of fσ yields

(1− σ)∥Rfσ∥2 + σ∥Sfσ∥2 ≤ (1− σ)∥Rf τ∥2 + σ∥Sf τ∥2

= (1− τ)∥Rf τ∥2 + τ∥Sf τ∥2 + (σ − τ)(∥Sf τ∥2 − ∥Rf τ∥2).

In terms of the function G, the latter reads G(σ) ≤ G(τ) + (σ − τ)(∥Sf τ∥2 − ∥Rf τ∥2). Likewise,

by exchanging the roles of τ and σ, we also have G(τ) ≤ G(σ) + (τ − σ)(∥Sfσ∥2 − ∥Rfσ∥2). We

combine these two inequalities in the form

(σ − τ)(∥Sfσ∥2 − ∥Rfσ∥2) ≤ G(σ)−G(τ) ≤ (σ − τ)(∥Sf τ∥2 − ∥Rf τ∥2).

This immediately implies that the function G is differentiable with

G′(τ) = ∥Sf τ∥2 − ∥Rf τ∥2.

Next, the eigenequation defining hτ can be written as [(1−τ)R∗
NRN +τS∗

NSN ]hτ = H(τ)Q̃∗
N Q̃Nhτ ,

and differentiating it with respect to τ , we obtain

(−R∗
NRN + S∗

NSN )hτ + [(1− τ)R∗
NRN + τS∗

NSN ]
dhτ

dτ
= H ′(τ)Q̃∗

N Q̃Nhτ +H(τ)Q̃∗
N Q̃N

dhτ

dτ
.

Taking the inner product with hτ , while noticing that〈
[(1− τ)R∗

NRN + τS∗
NSN ]

dhτ

dτ
, hτ
〉

=

〈
dhτ

dτ
, [(1− τ)R∗

NRN + τS∗
NSN ]hτ

〉
=

〈
dhτ

dτ
,H(τ)Q̃∗

N Q̃Nhτ
〉

= H(τ)

〈
Q̃∗

N Q̃N
dhτ

dτ
, hτ
〉
,

we arrive at the identity ⟨(−R∗
NRN + S∗

NSN )hτ , hτ ⟩ = H ′(τ)⟨Q̃∗
N Q̃Nhτ , hτ ⟩, which also reads

−∥Rhτ∥2 + ∥Shτ∥2 = H ′(τ)∥Q̃hτ∥2. This yields the announced expression for H ′(τ).

Finally, from the defining property of hτ , we point out that ∥Q̃hτ∥2 = (1−G(τ))/H(τ) and remark

that the derivative of H can also be expressed as H ′(τ) = (∥Shτ∥2 − ∥Rhτ∥2)H(τ)/(1−G(τ)). It

follows that, at the minimizer τy ∈ (0, 1) of ∥Q̃hτ∥, we have

0 = −G′(τy)H(τy)− (1−G(τy))H ′(τy)(19)

=
(
∥Rf τy∥2 − ∥Sf τy∥2 + ∥Rhτ

y∥2 − ∥Shτy∥2
)
×H(τy).

Simplifying by H(τy) ̸= 0 and rearranging yields ∥Rf τy∥2+∥Rhτ
y∥2 = ∥Sf τy∥2+∥Shτy∥2. With κ

denoting this common value, we see that

κ = (1− τy)
(
∥Rf τy∥2 + ∥Rhτ

y∥2
)
+ τy

(
∥Sf τy∥2 + ∥Shτy∥2

)
=
(
(1− τy)∥Rf τy∥2 + τy∥Sf τy∥2

)
+
(
(1− τy)∥Rhτ

y∥2 + τy∥Shτy∥2
)
.

18
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Taking into account that

(1− τy)∥Rhτ
y∥2 + τy∥Shτy∥2 = ⟨[(1− τy)R∗

NRN + τS∗
NSN ]hτ

y
, hτ

y⟩ = ⟨(1/λ(τy))Q̃∗
N Q̃Nhτ

y
, hτ

y⟩

= (1/λ(τy))∥Q̃hτ
y∥2 = 1− ((1− τy)∥Rf τy∥2 + τy∥Sf τy∥2),

we derive that κ = 1. The desired result is now proved.

Proof of Theorem 5, Part (ii). Together with ∥Rf τy∥2 + ∥Rhτ
y∥2 = ∥Sf τy∥2 + ∥Shτy∥2 = 1, the

additional orthogonality conditions ⟨Rf τy , Rhτ
y⟩ = 0 and ⟨Sf τy , Shτ

y⟩ = 0—note that one follows

from the other according to the characterization ((1− τy)R∗R+ τS∗S)f τy ⊥ kerΛ—imply

∥R(f τy ± hτ
y
)∥2 = 1 and ∥S(f τy ± hτ

y
)∥2 = 1.

From here, it follows that, for any z ∈ ran(Q̃),

lwcey(z)
2 = sup

∥Rf∥≤1,∥Sf∥≤1
Λf=y

∥Q̃(f)− z∥2 ≥ max
±
∥Q̃(f τy ± hτ

y
)− z∥2

≥ 1

2
∥Q̃f τy − z + Q̃hτ

y∥2 + 1

2
∥Q̃f τy − z − Q̃hτ

y∥2 = ∥Q̃f τy − z∥2 + ∥Q̃hτ
y∥2

≥ ∥Q̃hτ
y∥2.

This lower bound is the same as the upper bound from Part (i), so that Part (ii) is now proved.

Proof of Theorem 5, Part (iii). Let us now assume that the squared Chebyshev radius coincides

with the upper bound from Part (i), i.e., that the minimum squared local worst-case error equals

∥Q̃hτ
y∥2. In this case, we have

∥Q̃hτ
y∥2 ≤ lwcey(Q̃f τy) = sup

∥Rf∥≤1,∥Sf∥≤1
Λf=y

∥Q̃f − Q̃f τy∥2 = sup
∥R(fτy+h)∥≤1

∥S(fτy+h)∥≤1
h∈N

∥Q̃h∥2.

If the latter supremum is attained at some h ∈ N , we have ∥Q̃hτ
y∥2 ≤ ∥Q̃h∥2. Using the shorthand

T := [(1 − τy)R∗R + τyS∗S]1/2, the following chain of inequalities makes use of T ∗Tf τy ⊥ N , of
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∥R(f τy + h)∥ ≤ 1, ∥S(f τy + h)∥ ≤ 1, and of the normalization of hτ
y
:

∥Th∥2 = ⟨T ∗Th, h⟩ = ⟨T ∗T (f τy + h), (f τy + h)⟩ − ⟨T ∗Tf τy , f τy⟩
= ⟨[(1− τy)R∗R+ τyS∗S](f τy + h), (f τy + h)⟩ − ⟨[(1− τy)R∗R+ τyS∗S]f τy , f τy⟩
=
(
(1− τy)∥R(f τy + h)∥2 + τy∥S(f τy + h)∥2

)
−
(
(1− τy)∥Rf τy∥2 + τy∥Sf τy∥2

)
≤
(
(1− τy)× 1 + τy × 1

)
−
(
(1− τy)∥Rf τy∥2 + τy∥Sf τy∥2

)
= 1−

(
(1− τy)∥Rf τy∥2 + τy∥Sf τy∥2

)
=

1

λ(τy)
∥Q̃hτ

y∥2

≤ 1

λ(τy)
∥Q̃h∥2 = 1

λ(τy)
⟨[T ∗

NTN ]−1/2Q̃∗
N Q̃N [T ∗

NTN ]−1/2[T ∗
NTN ]1/2h, [T ∗

NTN ]1/2h⟩

≤ 1

λ(τy)
λmax

(
[T ∗

NTN ]−1/2Q̃∗
N Q̃N [T ∗

NTN ]−1/2
)
∥[T ∗

NTN ]1/2h∥2

= ∥TNh∥2.

Since the leftmost term and the rightmost term are the same, equality must hold all the way through,

implying that ∥R(f τy +h)∥2 = 1, ∥S(f τy +h)∥2 = 1, and that [T ∗
NTN ]1/2h is a leading eigenvalue of

[T ∗
NTN ]−1/2Q̃∗

N Q̃N [T ∗
NTN ]−1/2, hence h = hτ . We thus arrived at ∥R(f τy + hτ

y
)∥2 = 1. Recalling

from Lemma 7 that ∥Rf τy∥2 + ∥Rhτ
y∥2 = 1, we conclude that ⟨Rf τy , Rhτ

y⟩ = 0, as desired.

Remark. Although Theorem 5 may appear like an abstract statement distant from practical

considerations, our candidate locally optimal recovery map, as well as a locally optimal one, can

actually be efficiently computed, as revealed in the comments below.

a) The upper bound ∥Qhτ
y∥2 from Theorem 5, Part (i), is the optimal value of the semidefinite

program

minimize
b,c,d≥0

c(1− ∥RΛ†y∥2) + d(1− ∥SΛ†y∥2) + b(20)

s.to cR∗
NRN + dS∗

NSN ⪰ Q̃∗
N Q̃N

and

[
cR∗

NRN + dS∗
NSN cR∗

NRΛ†y + dS∗
NSΛ†y(

cR∗
NRΛ†y + dS∗

NSΛ†y
)∗

b

]
⪰ 0.

Moreover, if by, cy, dy ≥ 0 are minimizers, then the optimal parameter τy is given by dy/(cy+dy).

To justify this claim, we first look at the one-hyperellipsoid situation. By Lemma 6, the squared

Chebyshev radius is ρ2 = λmax

(
1−∥T f̂∥2

)
, where λmax := λmax([T

∗
NTN ]−1/2Q̃∗

N Q̃N [T ∗
NTN ]−1/2)

can be expressed as

λmax = inf
a≥0

{
a : aIdN ⪰ [T ∗

NTN ]−1/2Q̃∗
N Q̃N [T ∗

NTN ]−1/2
}
= inf

a≥0

{
a : aT ∗

NTN ⪰ Q̃∗
N Q̃N

}
.

Keeping in mind that T f̂ = y and that T ∗T f̂ ⊥ N—which yields f̂ = Λ†y−[T ∗
NTN ]−1T ∗

NTΛ†y—

we note that

∥T f̂∥2 = ⟨T f̂ , TΛ†y + T (f̂ − Λ†y)⟩ = ⟨T f̂ , TΛ†y⟩ = ⟨TΛ†y − T [T ∗
NTN ]−1T ∗

NTΛ†y, TΛ†y⟩
= ∥TΛ†y∥2 − ⟨[T ∗

NTN ]−1T ∗
NTΛ†y, T ∗

NTΛ†y⟩ = ∥TΛ†y∥2 − (T ∗
NTΛ†y)∗[T ∗

NTN ]−1(T ∗
NTΛ†y).
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It follows that the squared Chebyshev center can be written as

(21) ρ2 = inf
a≥0

{
a(1− ∥TΛ†y∥2) + (aT ∗

NTΛ†y)∗[aT ∗
NTN ]−1(aT ∗

NTΛ†y) : aT ∗
NTN ⪰ Q̃∗

N Q̃N
}
.

Relying on a classical property of Schur complements, we now notice that

(aT ∗
NTΛ†y)∗[aT ∗

NTN ]−1(aT ∗
NTΛ†y) = inf

b≥0

{
b : b ≥ (aT ∗

NTΛ†y)∗[aT ∗
NTN ]−1(aT ∗

NTΛ†y)
}

(22)

= inf
b≥0

{
b :

[
aT ∗

NTN aT ∗
NTΛ†y

(aT ∗
NTΛ†y)∗ b

]
⪰ 0

}
.

Putting (21) and (22) together, we now see that ρ2 has the semidefinite expression

ρ2 = inf
a,b≥0

{
a(1− ∥TΛ†y∥2) + b : aT ∗

NTN ⪰ Q̃∗
N Q̃N ,

[
aT ∗

NTN aT ∗
NTΛ†y

(aT ∗
NTΛ†y)∗ b

]
⪰ 0

}
.

Next, for the two-hyperellipsoid-intersection, our upper bound for the Chebyshev radius is the

minimal value of λ(τ)×
(
1−((1−τ)∥Rf τ∥2+τ∥Sf τ∥2)

)
over τ ∈ [0, 1]. For a fixed τ , this reduces

to the previous situation by considering T = [(1 − τ)R∗R + τS∗S]1/2, yielding a semidefinite

expression with variables a, b ≥ 0 that ought to be minimized over τ ∈ [0, 1] as well. By making

the change of variables c = a(1− τ) and d = aτ , we arrive, after some work, at the semidefinite

program announced in (20).

b) As noted in a), the optimal parameter τy can be found by solving the semidefinite program (20)

before setting τy = dy/(cy + dy). This parameter can alternatively be obtained by solving

the equation d∥Q̃hτ∥2/dτ = 0—recall that ∥Q̃hτ∥2 = (1 − G(τ))/H(τ) and (see (19)) that

d∥Q̃hτ∥2/dτ = F (τ)/H(τ), where F (τ) :=
(
∥Rf τ∥2 + ∥Rhτ∥2

)
−
(
∥Sf τ∥2 + ∥Shτ∥2

)
. Thus, we

need to solve the equation F (τ) = 0, which can be done via the Newton iteration

τ ← τ − F (τ)

F ′(τ)

provided that F (τ) and F ′(τ) are accessible throughout the iterations. Note that performing

an eigendecomposition at each iteration gives H(τ) = 1/λ(τ) and hτ and that f τ can also be

computed, thus making F (τ) accessible. As for F ′(τ), it can also become accessible in some

cases, e.g. when Q̃ = IdF . To see this, notice that

F ′(τ) = 2(α− β), α :=

〈
(R∗R− S∗S)f τ ,

df τ

dτ

〉
, β :=

〈
(R∗R− S∗S)hτ ,

dhτ

dτ

〉
.

We can access α via the formula f τ = Λ†y−
[
(1−τ)R∗

NRN+τS∗
NSN

]−1(
(1−τ)R∗

NR+τS∗
NS
)
Λ†y

written as
[
(1−τ)R∗

NRN+τS∗
NSN

]
(f τ−Λ†y) = −

(
(1−τ)R∗

NR+τS∗
NS
)
Λ†y, which differentiates

to give, after some work,

df τ

dτ
=
[
(1− τ)R∗

NRN + τS∗
NSN

]−1
(R∗

NR− S∗
NS)f τ .
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Turning to β, we notice that the eigenequation
[
(1 − τ)R∗

NRN + τS∗
NSN

]
hτ = H(τ)Q̃∗

N Q̃Nhτ

yields 〈
hτ ,

dhτ

dτ

〉
− τ

〈
(R∗

NRN − S∗
NSN )hτ ,

dhτ

dτ

〉
= H(τ)

〈
Q̃∗

N Q̃Nhτ ,
dhτ

dτ

〉
,

while 〈
Q̃∗

N Q̃Nhτ ,
dhτ

dτ

〉
=

1

2

d∥Q̃hτ∥2

dτ
=

F (τ)

2H(τ)
,

so that β is accessible as soon as

〈
hτ ,

dhτ

dτ

〉
is. But when Q̃ = IdF , the latter is indeed accessible

since 〈
hτ ,

dhτ

dτ

〉
=

1

2

d∥hτ∥2

dτ
=

1

2

d∥Q̃hτ∥2

dτ
=

F (τ)

2H(τ)
.

c) It took considerable effort to determine the candidate locally optimal recovery map and, even

then, we need an orthogonality condition to guarantee that we have found the genuine locally

optimal recovery map. In contrast, it would take much less effort determine a locally near-

optimal recovery map. Indeed, any map assigning to y ∈ Rm a model- and data-consistent

fy ∈ F—i.e., such that ∥Rfy∥ ≤ 1, ∥Sfy∥ ≤ 1, and Λfy = y—has a local worst-case error that

is away from optimality by a factor two. To see this, with f̂y denoting the genuine Chebyshev

center, we notice that

lwcey(f
y) = sup

∥Rf∥≤1,∥Sf∥≤1
Λf=y

∥Q(f)−Q(fy)∥ ≤ sup
∥Rf∥≤1,∥Sf∥≤1

Λf=y

∥Q(f)−Q(f̂y)∥ + ∥Q(f̂y)−Q(fy)∥

≤ 2 sup
∥Rf∥≤1,∥Sf∥≤1

Λf=y

∥Q(f)−Q(f̂y)∥ = 2 lwcey(f̂
y).

Such a model- and data-consistent fy can be obtained by solving the quadratic program

minimize
f∈F

max
{
∥Rf∥, ∥Sf∥

}
s.to Λf = y.

Using arguments similar to the ones from [32, Theorem 4], we can show that the solution fy to

the above program actually agrees with a constrained regularizer f τ for some τ ∈ [0, 1].

6 Locally Optimal Recovery in Hilbert Spaces

This section finally deals with the third multi-fidelity scenario mentioned in Section 2. Still working

in Hilbert spaces with f0 and f0 − f1 once more modeled as belonging to the hyperellipsoids K0

and K1 from (10), we now target locally optimal recovery maps, which are more challenging to

produce than the globally optimal recovery maps treated in Section 4. More precisely, given a
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linear quantity of interest Q : F → Z, we would like to construct, for every y = [y0; y1] ∈ Rm0+m1 ,

an element ∆opt(y) = zopt that minimizes over all z ∈ Z the local worst-case error

lwcey(z) = sup
∥P0f0∥≤ε0,∥P1(f0−f1)∥≤ε1

Λ0f0=y0,Λ1f1=y1

∥Q(f0)− z∥.

We capitalize on the result from the previous section by reformulating the latter as

(23) lwcey(z) = sup
∥Rf∥≤1,∥Sf∥≤1

Λf=y

∥Q̃(f)− z∥,

where the linear maps R, S, Λ, and Q̃ are the ones introduced in (12). Our main result shows that,

under some specific assumptions, constrained regularization yet again provides an optimal recovery

map, but this time the optimal parameter τy ∈ [0, 1] depends on y, making the locally optimal

recovery map nonlinear.

Theorem 8. Suppose that F is a Hilbert space and that the model sets K0,K1 ⊆ F are the

hyperellipsoidal sets defined in (10). Suppose also that ker(Λ0) ⊆ ker(P1) or ker(Λ0) ⊆ ker(Λ1). If

the linear quantity of interest Q : F → Z maps into a Hilbert space, then a locally optimal recovery

map is given by ∆opt : y ∈ Rm0+m1 7→ Q(f τy
0 ) ∈ Z, where

[f τ
0 ; f

τ
1 ] := argmin

f=[f0;f1]∈F×F

[
(1− τ)∥P0f0∥2 + τ∥P1(f0 − f1)∥2

]
s.to Λ0f0 = y0, Λ1f1 = y1.

Here, the regularization parameter τy is τy = cy1/(c
y
0 + cy1), with by, cy0, c

y
1 ≥ 0 being solutions to

the following semidefinite program featuring N0 := ker(Λ0), N1 := ker(Λ1), u0 := P0Λ
†
0y0, and

u1 := P1(Λ
†
0y0 − Λ†

1y1):

minimize
b,c0,c1≥0

c0
(
ε20 − ∥u0∥2

)
+ c1

(
ε21 − ∥u1∥2

)
+ b(24)

s.to

[
c0P

∗
0,N0

P0,N0 + c1P
∗
1,N1

P1,N1 −c1P ∗
1,N1

P1,N1

−c1P ∗
1,N1

P1,N1 c1P
∗
1,N1

P1,N1

]
⪰

[
Q∗

N0
QN0 0

0 0

]

and

c0P
∗
0,N0

P0,N0 + c1P
∗
1,N1

P1,N1 −c1P ∗
1,N1

P1,N1 c0P
∗
0,N0

u0 + c1P
∗
1,N1

u1

−c1P ∗
1,N1

P1,N1 c1P
∗
1,N1

P1,N1 −c1P ∗
1,N1

u1

(c0P
∗
0,N0

u0 + c1P
∗
1,N1

u1)
∗ −(c1P ∗

1,N1
u1)

∗ b

 ⪰ 0.

The key is to leverage the additional assumptions to certify that the necessary (and sufficient)

orthogonality condition from Theorem 5 is met, as shown below.

Lemma 9. If ker(Λ0) ⊆ ker(P1) or ker(Λ0) ⊆ ker(Λ1), then, for any τ ∈ (0, 1),

⟨P0f
τ
0 , P0h0⟩ = 0 and ⟨P1(f

τ
0 − f τ

1 ), P1(h0 − h1)⟩ = 0 for all h0 ∈ ker(Λ0), h1 ∈ ker(Λ1).

23



Worst-Case Learning under a multi-fidelity Model

Proof. With the notation of (12), we see that f τ = [f τ
0 ; f

τ
1 ] is the minimizer of (1−τ)∥Rf∥2+τ∥Sf∥2

subject to Λf = y. As such, it must satisfy
(
(1 − τ)R∗R + τS∗S

)
f τ ⊥ ker(Λ), in other words,

(1− τ)⟨Rf τ , Rh⟩+ τ⟨Sf τ , Sh⟩ = 0 for all h = [h0;h1] ∈ kerΛ. Reinserting the specific expressions

of R and S, this reads

1− τ

ε20
⟨P0(f

τ
0 ), P0(h0)⟩+

τ

ε21
⟨P1(f

τ
0 − f τ

1 ), P1(h0 − h1)⟩ = 0 for all h0 ∈ ker(Λ0), h1 ∈ ker(Λ1),

which itself decouples as the two identities

1− τ

ε20
⟨P0f

τ
0 , P0h0⟩+

τ

ε21
⟨P1(f

τ
0 − f τ

1 ), P1h0⟩ = 0 for all h0 ∈ kerΛ0,(25)

τ

ε21
⟨P1(f

τ
0 − f τ

1 ), P1h1⟩ = 0 for all h1 ∈ kerΛ1.(26)

First, let us assume that ker(Λ0) ⊆ ker(P1). Then (25) directly implies that ⟨P0f
τ
0 , P0h0⟩ = 0 for

all h0 ∈ ker(Λ0), while ⟨P1(f
τ
0 − f τ

1 ), P1(h0 − h1)⟩ = −⟨P1(f
τ
0 − f τ

1 ), P1h1⟩ = 0 for all h0 ∈ ker(Λ0)

and h1 ∈ ker(Λ1) according to (26). Second, let us now assume that ker(Λ0) ⊆ ker(Λ1). Then

(26) implies that ⟨P1(f
τ
0 − f τ

1 ), P1h0⟩ = 0, which, when substituted in (25), yields ⟨P0f
τ
0 , P0h0⟩ = 0

for all h0 ∈ ker(Λ0) and, when combined with (26), yields ⟨P1(f
τ
0 − f τ

1 ), P1(h0 − h1)⟩ = 0 for all

h0 ∈ ker(Λ0) and h1 ∈ ker(Λ1).

We are now ready to justify the main result of this section.

Proof of Theorem 8. For y ∈ Rm0+m1 , in view of the reformulation (23) of the local worst-case error,

the desired ∆opt(y) is the Chebyshev center of the set Q̃({f ∈ F : ∥Rf∥ ≤ 1, ∥Sf∥ ≤ 1,Λf = y}).
By Theorem 5 and using the notation introduced there, the latter is equal to Q̃(f τy), i.e., Q(f τy

0 ),

provided that ⟨Rf τy , Rhτ
y⟩ = 0, i.e., ⟨P0f

τy
0 , P0h

τy
0 ⟩ = 0. But Lemma 9 guarantees that this

orthogonality condition holds for any h0 ∈ ker(Λ0) and in particular for hτ
y

0 . Now, according to a)

in the remark closing Section 5, the parameter τy is obtained as τy = cy1/(c
y
0+cy1) where b

y, cy0, c
y
1 ≥ 0

solve (20). By substituting the expressions for R, S, Λ, and Q̃ from (12), we transform this

semidefinite program, after some routine work, into the announced semidefinite program (24).
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