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Abstract. We consider a new multivariate generalization of the classical monic

(univariate) Chebyshev polynomial that minimizes the uniform norm on the in-
terval [−1, 1]. Let Π∗

n be the subset of polynomials of degree at most n in d

variables, whose homogeneous part of degree n has coefficients summing up to 1.

The problem is determining a polynomial in Π∗
n with the smallest uniform norm on

a domain Ω, which we call a least Chebyshev polynomial (associated with Ω). Our

main result solves the problem for Ω belonging to a non-trivial class of domains

that we call diagonally-determined, and establishes the remarkable result that a
least Chebyshev polynomial can be given via the classical, univariate, Chebyshev

polynomial. In particular, the solution can be independent of the dimension.

Diagonally-determined domains include centered balls in Rd in any norm, but can
be non-convex and highly irregular. We also introduce a computational procedure,

based on semidefinite programming hierarchies, to detect if a given semi-algebraic
set is diagonally-determined.

1. Introduction

Among its numerous properties, the Chebyshev polynomial Tn(x) = cos(n arccosx)
provides a solution for the best approximation to the monomial xn on the interval
[−1, 1] in the uniform norm. More precisely, the polynomial

q∗n(x) = xn − 21−nTn(x)

of degree n− 1 (n ∈ N) is the best polynomial of approximation to xn on [−1, 1]; that
is

(1.1) q∗n = arg min
q∈Πn−1

sup
x∈[−1,1]

|xn − q(x)| ,

with Πn−1 being the vector space of univariate polynomials of degree at most n − 1.
In other words, the monic Chebyshev polynomial xn− q∗n is the least polynomial in the
sense that it has the least uniform norm among all monic polynomials of degree n.

There have been multiple extensions of Chebyshev polynomials to multivariate set-
tings from different angles. From the point of view of approximation, an immediate
generalization is finding the best approximation to monomials [1, 2, 5, 3, 9, 7, 11, 15,

16, 17]. Namely, for d > 1, α ∈ Nd and |α| :=
∑d

i=1 αi = n, we consider the problem

(1.2) min
q∈Πd

n−1

sup
x∈Ω

|xα − q(x)| ,
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where Πd
n−1 denotes the real polynomials of total degree at most n− 1 in the variables

x = (x1, . . . , xd), and where we define the monomial xα := xα1
1 . . . xαd

d . Since we will
deal with monomials of degree n throughout the paper, we introduce the notation

Nd
n :=

{
α ∈ (N0)

d : |α| = n
}
,

where N0 = N∪{0} denotes the nonnegative integers. Thus Nd
n indexes all monomials

of degree exactly n in d variables.
Problem (1.2) can be regarded as a natural multivariate generalization of (1.1),

where Ω ⊂ Rd is a subset of Rd. While the interval [−1, 1] is a prototype of a compact
connected set of the real line, there is no ‘prototype’ in higher dimensions for such
a set. In the literature, this problem has been studied primarily on a few special
regular domains. In two variables, the problem (1.2) is solved for the square, the disk,
and the isosceles right triangle [5, 3, 7, 11, 15]. While the solution on the square
can be extended to the cube for d > 2, the problem is solved only for a few cases,
mostly monomials of lower degrees, on the ball and the simplex [1, 2, 16]. Moreover,
the existing examples indicate an increasing complexity, so much so that it does not
appear possible to find an analytic solution even for these regular domains.

Recently, in [4] we have proposed to investigate (1.2) for various choices of Ω ⊂ Rd

and α ∈ Nd
n by combining analytical tools with numerical tools from optimization (and

notably the so-called moment-SOS hierarchy). During this study, we have encoun-
tered an optimization problem that has initiated a change of view: Namely, instead of
studying the best polynomial of approximation to monomials, we can study the least
polynomial instead. While the two concepts are identical in one variable, they can be
quite different in higher dimensions, as seen from the definition below.

Definition 1.1. Let Πd
n denote the space of polynomials of total degree at most n in

d variables, and Π∗
n the subset of Πd

n that consists of polynomials of the form

x 7→ P (x) :=
∑
α∈Nd

n

aα xα +Q(x) with
∑
α∈Nd

n

aα = 1 and Q ∈ Πd
n−1.

Let Ω be a domain in Rd. We consider the optimization problem

(1.3) inf
P∈Π∗

n

∥P∥Ω, where ∥P∥Ω := sup
x∈Ω

|P (x)| .

If it exists, we call a minimizer P ∗ ∈ Π∗
n of (1.3) a least Chebyshev polynomial of

degree n on the domain Ω.

For d = 1, there is only one monomial of degree n. In the case d > 1, every element
of Π∗

n is ‘monic’ and the monomial xα in (1.1) is only one among many possible choices
in Π∗

n. However, rather than approximating a fixed monomial by polynomials of lower
degree, the problem (1.3) requires finding a polynomial that has the least norm among
all polynomials in Π∗

n. As far as we are aware, this polynomial has not been considered
in the literature.

Contribution. The main purpose of this paper is to report our findings on the op-
timization problem (1.3). It turns out, much to our surprise, that the problem (1.3)
can be solved analytically for a fairly general family of domains Ω in Rd for all d ≥ 2.
This family of domains will be referred to as diagonally-determined.
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Organization of this paper. The paper is organized as follows. We start by defining
and describing several examples of diagonally-determined domains in Section 2. Our
main results are presented in Section 3, where we describe the least polynomial for
a diagonally-determined domain. We discuss the dual problem of (1.3) in Section 4
and show that it too has a closed-form solution in the case of diagonally-determined
sets. We also rephrase this result for the dual problem in the framework of extremal
signatures. Finally, we consider the problem of deciding whether a given semi-algebraic
set is diagonally determined in Section 5, and propose an algorithmic approach based
on semidefinite programming hierarchies. We conclude the paper with a discussion of
related problems and open questions in Section 6.

2. Diagonally-determined domains

We define the diagonal of a domain Ω ⊂ Rd as the set diag(Ω) := {t ∈ R : t1 ∈ Ω},
where 1 denotes the all-ones vector in Rd. For two vectors x,y ∈ Rd, we use ⟨x,y⟩ for
their standard inner product.

Definition 2.1. We call a set Ω ⊂ Rd diagonally-determined if the following two
conditions hold:

(1) The diagonal of Ω is an interval, say diag(Ω) = [a, b], and
(2) there exists v ∈ Rd such that ⟨v,1⟩ = 1 and ⟨v,x⟩ ∈ [a, b] for all x ∈ Ω.

Importantly, Definition 2.1 covers domains that could be non-convex, non-compact,
and even highly irregular. Figure 1 gives an example of a non-convex diagonally-
determined set in R2.

x1

x2

0 1 2 3 4

1

2

3

Figure 1. Example of a diagonally-determined, non-convex set.
Here, diag(Ω) = [1, 3], and v = (1, 0).

As a first observation, a dilation of a diagonally-determined set is again diagonally-
determined.

Lemma 2.2. If Ω ⊂ Rd is diagonally-determined with diag(Ω) = [a, b] and vector v,
then, for any r > 0, the dilation

rΩ := {rx : x ∈ Ω}
is also diagonally-determined with diag(rΩ) = [ra, rb] and vector v.

Proof. The proof is an immediate consequence of Definition 2.1. □
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We will now show that balls in Rd (in any norm), centered at the origin, are examples
of diagonally-determined sets.

Proposition 2.3. Consider a ball of radius r in Rd centered at the origin:

Ω := {x ∈ Rd : ∥x∥ ≤ r},

where ∥ · ∥ denotes any norm on Rd. Then Ω is a diagonally-determined set. If, in
addition, the norm ∥ · ∥ is monotone, i.e.

∥x∥ ≤ ∥|x|∥ ∀x ∈ Rd,

where |x| = (|x1|, . . . , |xd|), then the vector v may be assumed to be entrywise-nonnegative,
denoted by v ≥ 0.

Proof. We prove the statement for unit balls; the required result then follows from
Lemma 2.2.

Let ∥ · ∥∗ denote the usual dual norm of ∥ · ∥, namely

∥u∥∗ = sup{⟨u,x⟩ : ∥x∥ = 1}, u ∈ Rd.

Let v = u/∥1∥, where u ∈ Rd is ‘dual’ to 1, in the sense that ∥u∥∗ = 1 and ⟨u,1⟩ =
∥1∥. We then have diag(Ω) = [a, b] with a = −1/∥1∥ and b = 1/∥1∥, ⟨u/∥1∥,1⟩ = 1,
and |⟨u/∥1∥,x⟩| ≤ (1/∥1∥)∥u∥∗∥x∥ ≤ 1/∥1∥ = b, so that ⟨u/∥1∥,x⟩ ∈ [a, b] for all
x ∈ Ω.

Assume now that the norm ∥ · ∥ is monotone. Then the dual norm ∥ · ∥∗ has the
‘reversed’ monotonicity property:

∥u∥∗ ≥ ∥|u|∥∗ ∀u ∈ Rd.

Thus, the vector u ‘dual’ to 1 in the above construction is component-wise nonnegative.
Indeed, if not, then

1 = ∥u∥∗ ≥ ∥|u|∥∗ ≥ ⟨|u|,1/∥1∥⟩ > ⟨u,1/∥1∥⟩ = 1,

a contradiction. Subsequently, since v = u/∥1∥, we have v ≥ 0, as required. □

By Definition 2.1, we have the following immediate corollary.

Corollary 2.4. Assume Ω ⊂ Rd is a subset of a ball in Rd in any norm, centered at
the origin, and that the diagonal of Ω coincides with the diagonal of the ball. Then Ω
is a diagonally-determined set.

To illustrate this corollary, the example in Figure 2 shows a non-convex subset of a
unit (Euclidean) ball, that has the same diagonal as the ball.

Example 2.5. It is insightful to consider the specific example of the unit ball of the owl
norm (ordered weighted ℓ1-norm) defined relative to weights w1 ≥ w2 ≥ · · · ≥ wd ≥ 0
by

∥x∥owl =
d∑

i=1

wix
∗
i ,

with (x∗
1, . . . , x

∗
d) being the nonincreasing rearrangement of (|x1|, . . . , |xd|). Note that

∥1∥owl =
∑d

i=1 wi =: W , so that b = 1/W . Letting w = (w1, . . . , wd), we set v =
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x1

x2

0 1
2 1

1
2

1

Figure 2. Example of a diagonally-determined, non-convex set.

Here, diag(Ω) =
[
− 1√

2
, 1√

2

]
, and v =

(
1
2 ,

1
2

)
.

w/W , since ⟨w/W,1⟩ = (
∑d

i=1 wi)/W = 1 and, for ∥x∥owl ≤ 1,

|⟨w/W,x⟩| =

∣∣∣∣∣
n∑

i=1

wixi

∣∣∣∣∣ /W
≤

(
n∑

i=1

wi|xi|

)
/W

≤

(
n∑

i=1

wix
∗
i

)
/W

≤ 1/W = b.

The intersection of certain balls in Rd with the nonnegative orthant in Rd is also
diagonally-determined, as the next result shows.

Proposition 2.6. Assume ∥ · ∥ is a norm on Rd with dual norm ∥ · ∥∗, and that the
following holds: there is an entrywise-nonnegative vector u ≥ 0 such that ∥u∥∗ = 1
and ⟨u,1⟩ = ∥1∥.

Further assume Ω ⊂ Rd has diagonal diag(Ω) = [0, r/∥1∥] for some r > 0, and, for
all x ∈ Ω, x ≥ 0 and ∥x∥ ≤ r. Then Ω is a diagonally-determined set with vector
v = u/∥1∥.

Proof. We again prove the statement for the case r = 1; the result for general r > 0
then follows from Lemma 2.2. Setting v = u/∥1∥, one has ⟨v,1⟩ = 1. Moreover, for
x ∈ Ω, ⟨v,x⟩ ≥ 0, since x,v ≥ 0, and

⟨v,x⟩ = 1

∥1∥
⟨u,x⟩ ≤ 1

∥1∥
∥u∥∗∥x∥ ≤ 1

∥1∥
,

so that ⟨v,x⟩ ∈ diag(Ω) for all x ∈ Ω. □

We note again that the assumption on the norm in Proposition 2.6 is met by, for
example, all monotone norms, as shown in the proof of Proposition 2.3.
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As a simple corollary of the proposition, the simplex

Ω =

{
x ∈ Rd : x ≥ 0,

d∑
i=1

xi ≤ 1

}
,

is diagonally-determined, since it is the intersection of the unit ℓ1-ball with the non-
negative orthant. See Figure 3 for an illustrative example of Proposition 2.6.

x1

x2

0 1
2 1 3

2

1
2

1

3
2

Figure 3. Example to illustrate Proposition 2.6. Here, diag(Ω) =
[0, b], with b ≈ 1.35. Moreover, Ω is contained in the ℓ1-ball of radius
r = bd ≈ 2.7, intersected with the nonnegative quadrant.

Finally, the diagonally-determined property is not invariant under translation in
general. The exception is a translation by a constant multiple of the all-ones vector.
We state this observation as a lemma for later use. The proof again follows immediately
from Definition 2.1 and is omitted.

Lemma 2.7. Fix α ∈ R. Then a given Ω ⊂ Rd is diagonally determined with
diag(Ω) = [a, b] and vector v if and only if its translation Ω + α1 is diagonally deter-
mined with diagonal [a+ α, b+ α] and vector v.

3. Least Chebyshev polynomial for a diagonally-determined domain

In this section, and with Ω being a domain in Rd, we consider the problem of finding
a least polynomial P ∗ ∈ Π∗

n such that

∥P ∗∥Ω = inf {∥P∥Ω : P ∈ Π∗
n} ,

for the special case where Ω is diagonally-determined.

Theorem 3.1. Let Ω be diagonally-determined with vector v and diag(Ω) = [a, b].
Then

(3.1) inf {∥P∥Ω : P ∈ Π∗
n} =

(
b− a

2

)n
1

2n−1
,

and the infimum is attained by the polynomial

(3.2) x 7→ P ∗(x) :=

(
b− a

2

)n
1

2n−1
Tn

(
−1 + 2

⟨v,x⟩ − a

b− a

)
.
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Proof. Let P ∈ Π∗
n, say

P (x) =
∑
α∈Nd

n

aα xα +Q(x) with
∑
α∈Nd

n

aα = 1and Q ∈ Πd
n−1.

Then P (t, . . . , t) = tn+qn−1(t), where qn−1(t) = Q(t, . . . , t) is a univariate polynomial
of degree at most n− 1 in the single variable t. Hence,

(3.3) ∥P∥Ω ≥ max
a≤t≤b

|tn + qn−1(t)| ≥
(
b− a

2

)n
1

2n−1
,

where we have used a classical result in one variable, and equality in the last inequality
is attained by choosing qn−1 such that tn+qn−1(t) is the rescaled Chebyshev polynomial
in the right-hand side of (3.2).

Moreover, as Ω is diagonally-determined, then for all x ∈ Ω, one has ⟨v,x⟩ ∈ [a, b],
and therefore

∥P ∗∥Ω =

(
b− a

2

)n
1

2n−1
max
x∈Ω

∣∣∣∣Tn

(
−1 + 2

⟨v,x⟩ − a

b− a

)∣∣∣∣ ≤ (b− a

2

)n
1

2n−1
.

Finally, we need to show that P ∗ ∈ Π∗
n. First note that t 7→ P ∗(t1) is a monic

univariate polynomial in t, since ⟨v,1⟩ = 1. On the other hand, we may write P ∗ in
the form

P ∗(x) =
∑
α∈Nd

n

a∗α xα +Q∗(x) with Q∗ ∈ Πd
n−1,

so that

P ∗(t1) =
∑
α∈Nd

n

a∗αt
n +Q∗(t1).

Thus
∑

α∈Nd
n
a∗α = 1, and therefore P ∗ ∈ Π∗

n, as required. □

The minimal value in (3.1) does not depend explicitly on the dimension d, but
the diagonal [a, b] may. For example, if Ω is the unit Euclidean ball in Rd, then

[a, b] = [−1/
√
d, 1/

√
d].

Example 3.2. For the cube Ω = [−1, 1]d, Theorem 3.1 shows that ∥P ∗∥Ω = 2−n+1.
In contrast, for every α ∈ Nd with |α| = n, we have

inf
P∈Πd

n−1

∥xα − P∥[−1,1]d = 2−n+d,

as shown in [18] (see also [15]), which depends on the dimension d.

Since an optimal solution of problem (1.3) is given in terms of the univariate Cheby-
shev polynomial Tn in Theorem 3.1, the reader may wonder if this optimal solution is
in fact unique. This turns out to be not the case, as the next example shows.

Example 3.3. The simplex △d = {x ∈ Rd : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xd ≤ 1 }
is diagonally-determined with v = (1, 0, . . . , 0), and diag(△d) = [0, 1]. Hence, by
Theorem 3.1,

∥P ∗∥△d = inf
{
∥P∥△d : P ∈ Π∗

n

}
=

(
1

2

)n
1

2n−1
= 2−2n+1

is independent of the dimension d. Moreover, one has P ∗(x) = 2−2n+1Tn(2x1 − 1),
which is univariate. Another valid choice for v is v = (0, 1, 0, . . . , 0) that leads to a
different least Chebyshev polynomial, namely x 7→ 2−2n+1Tn(2x2 − 1).
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Example 3.4. Returning to Example 2.5, where Ω is the unit ball for the owl norm, we
have [a, b] = [−1/W, 1/W ] and v = w/W , so that, by Theorem 3.1, the least Chebyshev
polynomial of degree n becomes

x 7→ P ∗(x) =

(
1

W

)n
1

2n−1
Tn (⟨w,x⟩) .

We point out that the requirement
∑

α∈Nd
n
aα = 1, is susceptible to an affine change

of variables other than a translation. For instance, the triangle △̂2 = {x : x1 ≥ 0, x2 ≥
0, x1+x2 ≤ 1 }, is a mirror image of △2 under x2 7→ 1−x2. However, under the affine
change of variables x2 7→ 1 − x2, the leading monomial a0x

2
1 + a1x1x2 + a2x

2
2 of a

polynomial in Π∗
2 becomes, a0x

2
1−a1x1x2+a2x

2
2, which is no longer an element of Π∗

2.
Moreover, the extremal problem (1.3) in Definition 1.1 is not rotationally invariant.

To see this consider the following three sets in R2, that are rotations of the same line
segment:

Ω1 := {(x, x) | x ∈ [−1, 1]}
Ω2 := {(0, x) | x ∈ [−

√
2,
√
2]}

Ω3 := {(x,−x) | x ∈ [−1, 1]}.

Of these three sets, only Ω1 is diagonally-determined. Even though the three sets are
rotations of each other, the solution to the extremal problem (1.3) is starkly different
in each case:

• For Ω1, Theorem 3.1 provides the solution (x1, x2) 7→ 1
2n−1Tn(x1) as a least

Chebyshev polynomial, and thus infP∈Π∗
n
∥P∥Ω1 = 1

2n−1 ;
• For Ω2, a least Chebyshev polynomial is clearly given by (x1, x2) 7→ xn

1 , so
that infP∈Π∗

n
∥P∥Ω2

= 0;

• For Ω3, a least Chebyshev polynomial is (x1, x2) 7→ 1
2n (x1 + x2)

n, so that
infP∈Π∗

n
∥P∥Ω3

= 0.

The example shows that the diagonal of Ω plays a key role in determining the least
Chebyshev polynomial, and that it is not only an artefact of the analysis.

4. The dual framework and signatures

In this section we consider the dual problem of (1.3). Our goal is to show that, in
the special case of diagonally-determined domains, the dual problem has a closed-form
solution. Moreover, we will construct a dual solution that is atomic (discrete), and
supported on n+ 1 points.

4.1. The dual problem. With Ω being a domain in Rd, let C(Ω) be the space of
continuous functions on Ω, and let C(Ω)∗ be the dual space of C(Ω). For compact Ω,
one has the following, strong duality result for problem (1.3).

Theorem 4.1. Let Ω ⊂ Rd be compact, and consider the dual problem of (1.3), namely
(4.1)

γ∗ := sup
γ∈R

L∈C(Ω)∗

{
γ : L|Πd

n−1
= 0, ∥L∥C(Ω)∗ = 1, and L(x 7→ xα) = γ for all α ∈ Nd

n

}
,
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where the norm of L is defined as

∥L∥C(Ω)∗ = sup
h∈C(Ω)

{|Lh| : ∥h∥Ω ≤ 1}.

One has γ∗ ≤ inf {∥P∥Ω : P ∈ Π∗
n} (weak duality), and γ∗ = inf {∥P∥Ω : P ∈ Π∗

n}
if Ω is compact (strong duality).

One may derive this result directly through conic linear programming duality theory,
e.g. [14, Proposition 2.9], and we will omit the proof here.

It is insightful, though, to make a link with classical Chebyshev approximation. To
this end, we denote an optimal solution of problem (1.3) by

(4.2) x 7→ P ∗(x) =
∑
α∈Nd

n

a∗αx
α +Q∗(x) such that

∑
α∈Nd

n

a∗α = 1, Q∗ ∈ Πd
n−1.

Note that P ∗ ∈ Π∗
n. Clearly,

∥P ∗∥Ω = min
Q∈Πd

n−1

∥∥∥∥∥∥
∑
α∈Nd

n

a∗αx
α +Q(x)

∥∥∥∥∥∥
Ω

,

while the latter problem is the classical Chebyshev problem of approximating the
homogeneous polynomial x 7→

∑
α∈Nd

n
a∗αx

α from Πd
n−1.

Recall the strong duality result for the classical Chebyshev approximation problem
as given in the paper by Rivlin and Shapiro [13, Corollary 2].1

Theorem 4.2. For any f ∈ C(Ω), with Ω compact, one has the following

(4.3) min
Q∈Πd

n−1

∥f −Q∥Ω = max
L∈C(Ω)∗

{
L(f) : L|Πd

n−1
= 0, ∥L∥C(Ω)∗ = 1

}
.

From this, we can immediately deduce the following relation between the two dual
problems.

Lemma 4.3. For f(x) =
∑

α∈Nd
n
a∗αx

α, any optimal solution of problem (4.1) is also

optimal for the dual problem in (4.3).

Proof. Let L∗ denote an optimal solution of problem (4.1). Then L∗ is feasible for the
dual (maximization) problem in (4.3). Moreover,

L∗(f) = L∗

∑
α∈Nd

n

a∗αx
α

 =
∑
α∈Nd

n

a∗αL
∗(xα) =

∑
α∈Nd

n

a∗αγ
∗ = γ∗ = ∥P ∗∥Ω.

This yields the result. □

In the next subsection, we review the fact that the optimal dual solutions may be
assumed to be atomic (discrete) without loss of generality.

1In [13, Corollary 2], the objective is in fact given as sup |L(f)|, but the absolute value may be
omitted w.l.o.g., since L is feasible for the dual problem if and only if −L is feasible.
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4.2. Atomic dual solutions and signatures. We first recall a classical interpolation
formula for linear functionals, as given in [13, Corollary 3].

Theorem 4.4. Let L be any linear functional on a finite dimensional subspace V of
C(Ω), with Ω compact. Then there exist points ω1, . . . , ωr ∈ Ω with r ≤ dim(V ), and
non-zero scalars τ1, . . . , τr, such that, defining the point evaluation functionals

Lωi(f) = f(ωi) i = 1, . . . , r,

one has

(4.4) L =

r∑
i=1

τiLωi
, ∥L∥ =

r∑
i=1

|τi|.

As a consequence, there exists a discrete (atomic) solution to problem (4.1). We
give a proof below only for the sake of completeness and later reference — the type of
argument we use is classical.

Corollary 4.5. There exist points ω1, . . . , ωr ∈ Ω with r ≤ dim(Πd
n), and non-zero

scalars τ1, . . . , τr with
∑r

i=1 |τi| = 1, such that an optimal solution of problem (4.1)
is given by (4.4). Moreover, the points ω1, . . . , ωr are extremal points of any optimal
solution P ∗ to problem (1.3), i.e.,

|P ∗(ωi)| = ∥P ∗∥Ω for all i = 1, . . . , r.

Proof. The first statement follows immediately from Theorem 4.4, applied to an opti-
mal solution of problem (4.1), and using V = Πd

n. It remains to show that the points
ω1, . . . , ωr are extremal points of any optimal solution P ∗ to problem (1.3). Now let
L∗ denote an optimal solution of problem (4.1), so that

(4.5) L∗ =

r∑
i=1

τiLωi
,

r∑
i=1

|τi| = 1.

By Lemma 4.3, L∗ is also an optimal solution for the dual problem in (4.3). Thus,
for any optimal solution P ∗ of problem (1.3), one has

∥P ∗∥Ω = L∗(P ∗) =

r∑
i=1

τiP
∗(ωi).

Since
∑r

i=1 |τi| = 1, ∥P ∗∥Ω is a weighted average of the values P ∗(ωi) with τi > 0 and
−P ∗(ωi) with τi < 0. As a consequence, we have

∥P ∗∥Ω =

{
P ∗(ωi) if τi > 0,

−P ∗(ωi) if τi < 0,

completing the proof. □

The extremal points in Corollary 4.5 are usually called the support of an extremal
signature, defined along the line of [12, Section 2.2] as follows.

Definition 4.6. A signature with finite support S ⊂ Ω is simply a (partition) function
from S to {±1}. A signature σ with support S is said to be extremal for a subspace
V ⊂ C(Ω) if there exist weights λω > 0, ω ∈ S, such that

∑
ω∈S λωσ(ω)v(ω) = 0

for all v ∈ V . A signature σ with support S is said to be associated with a function
g ∈ C(Ω) if S is included in the set {ω ∈ Ω : |g(ω)| = ∥g∥Ω} of extremal points of g
and if σ(ω) = sgn(g(ω)) for all ω ∈ S.
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Thus, the result of Corollary 4.5 may be restated as the existence of a signature
with support S = {ω1, . . . , ωr} where r ≤ dim(Πd

n). This signature is extremal for
Πd

n−1, and associated with every optimal solution of problem (1.3). Therefore, we will
simply refer to an optimal signature for problem (1.3). Formally we have the following
result.

Proposition 4.7. Any atomic solution of the dual problem (4.1), say L∗ of the form
(4.5), gives rise to an optimal signature for problem (1.3), by setting:

S = {ω1, . . . , ωr}, σ(ωi) = sgn(τi), λi = |τi|, i = 1, . . . , r.

This is essentially a reformulation of the well-known characterization of best ap-
proximation by polynomials in terms of the extremal signature ([12, Theorem 2.6]) for
the dual problem.

4.3. Signatures for diagonally-determined domains. For the special case where
Ω is a diagonally-determined set, we may now infer information about an optimal
signature from Theorem 3.1 and Proposition 4.7. The idea of the proof is to construct
an atomic optimal solution for the dual problem (4.1).

Theorem 4.8. Let Ω be a diagonally-determined set with diag(Ω) = [a, b] and vector
v. Then, an optimal signature for problem (1.3) is defined by a set S, of n+ 1 points

(4.6) ωj = a1+
b− a

2

(
1 + cos

(
(j − 1)π

n

))
1 for j = 1, . . . , n+ 1,

where 1 again denotes the all-ones vector in Rd, together with the partition function
σ : S → {−1, 1}, given by

σ(ωj) =

{
1 if j is odd

−1 if j is even,

as well as λ1 = λn+1 = 1
2 , and λi = 1 if i = 2, . . . , n.

Proof. By Theorem 3.1, an optimal solution to problem (1.3) is given by the polynomial
P ∗ in (3.2), namely

P ∗(x) =

(
b− a

2

)n
1

2n−1
Tn

(
−1 + 2

⟨v,x⟩ − a

b− a

)
.

Using the well-known fact that the extremal points of Tn are given by the Gauss-
Lobatto-Chebyshev points ξj := cos ((j − 1)π/n) for j = 1, . . . , n+1, we have that the
points listed in (4.6) are extremal points of P ∗. Indeed, using ⟨v,1⟩ = 1, one has

⟨v, ωj⟩ = a+
b− a

2

(
1 + cos

(
(j − 1)π

n

))
for j = 1, . . . , n+ 1,

which is the same as

−1 + 2
⟨v, ωj⟩ − a

b− a
= ξj for j = 1, . . . , n+ 1.

Next, we will construct an atomic solution of the dual problem (4.1), which will
lead to the required optimal signature, by Proposition 4.7.

To this end, define the linear operator

L∗ =
1

n

n+1∑
i=1

(−1)i+1λiLωi
.
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We claim that L∗ is an optimal solution of the dual problem (4.1). We first verify
feasibility. We will show that L∗ vanishes on Πd

n−1, as required, by using the Gauss-
Lobatto-Chebyshev quadrature formula, which implies, for k < n:

0 =

∫ 1

−1

Tn(t)Tk(t)
1√

1− t2
dt =

π

n+ 1

n+1∑
j=1

λjTn(ξj)Tk(ξj),

due to the orthogonality of Chebyshev polynomials. Using Tn(ξj) = (−1)1+j yields

(4.7) L∗(Tk) =
1

n

n+1∑
j=1

λj(−1)1+jTk(ξj) = 0 if k < n.

Thus L∗ vanishes on univariate (and separable) polynomials in Πd
n−1. For the general

case, it suffices to consider d = 2 and the monomial p(x1, x2) = Tk1
(x1)Tk2

(x2), where
k1 + k2 < n, and show that L∗(p) = 0. To this end, note that

L∗(p) =
1

n

n+1∑
j=1

λj(−1)1+jTk1(ξj)Tk2(ξj)

=
1

n

n+1∑
j=1

λj(−1)1+j 1

2
[T|k1−k2|(ξj) + Tk1+k2(ξj)]

=
1

2n

n+1∑
j=1

λj(−1)1+jT|k1−k2|(ξj) +
1

2n

n+1∑
j=1

λj(−1)1+jTk1+k2
(ξj) = 0,

using (4.7). The result for general d now follows by induction.
Secondly, we verify that L∗(xα) is independent of α, when |α| = n, say L∗(xα) = γ̂

whenever α ∈ Nd
n. This follows immediately from the construction of L∗, since all

coordinates of the vectors ωi are equal for all i = 1, . . . , n + 1. Finally, to prove
optimality, we note that, for P ∗ written in the form (4.2),

∥P ∗∥Ω = L∗(P ∗) =
∑
α∈Nd

n

a∗αL
∗(xα) = γ̂

∑
α∈Nd

n

a∗α = γ̂,

so, by the weak duality theorem, L∗ is indeed optimal. The required result now follows
from Proposition 4.7. □

Remark 4.1. It is interesting to note that — for diagonally-determined sets — there
exists an optimal signature for problem (1.3) with support size n+1. One can compare

this to the general result for compact Ω of a signature support size of dim(Πd
n) =

(
n+d
d

)
.

Remarkably the minimum support size is independent of d in the diagonally-determined
case. Moreover, we did not use compactness of Ω in the proof of Theorem 4.8, whereas
compactness is needed for the general bound. Finally, note that the optimal signature
in Theorem 4.8 depends on Ω only through its diagonal [a, b], and is independent of v.

5. Detecting the diagonally-determined property

The goal of this section is to provide a numerical scheme to detect whether a given
compact basic semi-algebraic set

(5.1) Ω := {x ∈ Rd : gj(x) ≥ 0 , j = 1, . . . ,m }
for some given polynomials gj , is diagonally-determined.
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The quadratic module of g1, . . . , gm, denoted by Q(g1, . . . , gm), is defined as all
polynomials of the form

(5.2) p = σ0 + σ1 g1 + · · ·+ σm gm

for some sum-of-squares polynomials σ0, σ1, . . . , σm. Clearly, if p ∈ Q(g1, . . . , gm), then
p(x) ≥ 0 for all x ∈ Ω.

Assumption 5.1. We assume that Q(g1, . . . , gm) satisfies the Archimedean condition,
meaning that there exists a p ∈ Q(g1, . . . , gm) such that{

x ∈ Rd : p(x) ≥ 0
}

is compact.

Under this assumption, if a polynomial is (strictly) positive on Ω, then it belongs
to Q(g1, . . . , gm). We state this result — known as Putinar’s Positivstellensatz — as
a theorem for later use.

Theorem 5.2 (Putinar [10]). Assume Ω is of the form (5.1) and that Assumption 5.1
holds. If p ∈ Πd

n satisfies p(x) > 0 for all x ∈ Ω, then p ∈ Q(g1, . . . , gm).

We also introduce the concept of the truncated quadratic module of degree k ∈ N0,
denoted by Q(g1, . . . , gm)k, as the subset of Q(g1, . . . , gm) where each term on the
right-hand-side of (5.2) has degree at most k, i.e. deg(σ0) ≤ k, and deg(σjgj) ≤ k for
all j = 1, . . . ,m. The membership problem for Q(g1, . . . , gm)k may be reformulated
as a semidefinite programming feasibility problem; see Lasserre [6], and the references
therein.

Finding the diagonal [a, b]. We first note that one may find the diagonal of Ω by
finding the real roots of the univariate polynomials

t 7→ pj(t) := gj(t1), j = 1, . . . ,m.

Indeed, for each pj we may find the set of all (possibly unbounded) intervals where it is
nonnegative, and subsequently take the intersection of all these sets for j = 1, . . . ,m.
If the result is a single interval [a, b], then diag(Ω) = [a, b], and we may proceed with
the next step, since the first property holds in Definition 2.1.

Once [a, b] is known. We assume that we now know [a, b] = diag(Ω), and that
a < 0 < b. The latter assumption is without loss of generality, due to Lemma 2.7.
Then, to detect whether the second property holds in Definition 2.1, consider the
optimization problem:

(5.3) ρ = min
v′

{ |1− ⟨v′,1⟩| : a ≤ ⟨v′,x⟩ ≤ b ∀x ∈ Ω } .

Then Ω is diagonally-determined if and only if ρ = 0. Note that one may in fact omit
the absolute value in the objective of (5.3), since x = b1 ∈ Ω, and ⟨v′,x⟩ ≤ b therefore
implies ⟨v′,1⟩ ≤ 1 for all v′ that are feasible for (5.3).

We now relax this problem to a sequence of semidefinite programs, using the ap-
proach introduced by Lasserre [6]. The key idea is to replace the nonnegativity con-
ditions in (5.3) by the sufficient condition of membership of a truncated quadratic
module. To this end, we introduce the two affine functions, for given v′ ∈ Rd:

x 7→ b− ⟨v′,x⟩ = ℓv′,b(x), x 7→ ⟨v′,x⟩ − a = ℓv′,a(x),

to obtain the reformulation of problem (5.3) as

ρ = min
v′

{ 1− ⟨v′,1⟩ : ℓv′,a(x), ℓv′,b(x) ≥ 0 ∀x ∈ Ω } .
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For every k ∈ N0, we now define:

(5.4) ρk = min
v′

{1− ⟨v′,1⟩ : ℓv′,a, ℓv′,b ∈ Q(g1, . . . , gm)k} .

Importantly, and as already mentioned, we emphasize that the optimization problem
(5.4) is a (convex) semidefinite program that can be solved efficiently with arbitrary
precision (fixed in advance), under mild assumptions, using, e.g., interior point meth-
ods; see Lasserre [6].

Proposition 5.3. Assume Ω is of the form (5.1), that Assumption 5.1 holds, and that
diag(Ω) = [a, b] where a < 0 < b. Then one has ρk ∈ [0, 1] for all k. Moreover, if Ω
is diagonally-determined, then the sequence {ρk} converges monotonically to zero. If
ρk = 0 for some finite value of k, then the optimal v′ ∈ Rd of (5.4) certifies that Ω is
diagonally-determined with vector v = v′ and diagonal [a, b].

Proof. For k = 0, a feasible solution of (5.4) is given by v′ = 0, since a < 0 < b, so that
ρ0 ≤ 1. Consequently, ρk ∈ [0, 1] for all k, since Q(g1, . . . , gm)k ⊆ Q(g1, . . . , gm)k+1 for
all k ∈ N0. Assume now that Ω is diagonally-determined with vector v and diagonal
[a, b]. Then, for any ε > 0 and x ∈ Ω, one has

⟨(1− ε)v,x⟩ ∈ [(1− ε)a, (1− ε)b] ⊂ (a, b),

where we again use that a < 0 < b. Thus, x 7→ ⟨(1 − ε)v,x⟩ − a ∈ Q(g1, . . . , gm)
and x 7→ b − ⟨(1 − ε)v,x⟩ ∈ Q(g1, . . . , gm), by Theorem 5.2. This implies that, for
sufficiently large k∗ ∈ N0, v′ = (1 − ε)v is feasible for (5.4) with k = k∗. Thus
ρk∗ ≤ 1− ⟨(1− ε)v,1⟩ = ε, and therefore the sequence {ρk} converges monotonically
to zero. □

Example 5.4. It is insightful to see how the above procedure works in the case of the
unit ball in the ∞-norm, i.e.

Ω = {x ∈ Rd : ∥x∥∞ ≤ 1}.

By Proposition 2.3, and its proof, we know that Ω is diagonally-determined, with di-
agonal [a, b] = [−1, 1] and vector v = 1

d1. We may describe Ω as a semi-algebraic

set in the form (5.1) by using the polynomials gj(x) = 1 − x2
j for j = 1, . . . , d, i.e.

m = d. The next step is to find the diagonal of Ω by finding the roots of the univariate
polynomials pj(t) := gj(t1) = 1− t2 for j = 1, . . . , d. These polynomials are the same
for all j and nonnegative on the interval [−1, 1], so that we obtain [a, b] = [−1, 1]. The
next step is to solve (5.4) for increasing values of k ∈ N. Using the identity

1± x =
1

2

(
(1± x)2 + 1− x2

)
, (x ∈ R),

one obtains that

b− ⟨v,x⟩ = 1− 1

d

d∑
j=1

xj =
1

d

d∑
j=1

(1− xj) =
1

2d

d∑
j=1

(
(1− xj)

2 + gj(x)
)
.

Similarly one has

⟨v,x⟩ − a =
1

2d

d∑
j=1

(
(1 + xj)

2 + gj(x)
)
.

Thus, for k = 2, we find that v′ = v is feasible in (5.4), so that ρ2 = 0.
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In the example we have finite convergence of the sequence {ρk}, but it is an open
question when this occurs. There are known sufficient conditions for the finite con-
vergence of Lasserre-type semidefinite programming hierarchies, e.g. [8], but these are
not satisfied for our problem in general.

6. Conclusion and discussion

The extremal problem (1.3) we considered in this paper relies on a specific gen-
eralization of the concept of a monic univariate polynomial to the multivariate case.
In particular, in the multivariate case we require that the leading coefficients (in the
standard monomial basis) sum to one, leading to the introduction of the set Π∗

n in Def-
inition 1.1. There are other natural choices, like also requiring the leading coefficients
to be nonnegative. Having said that, the least Chebyshev polynomial in Theorem 3.1
already has nonnegative leading coefficients for many diagonally-determined domains,
e.g. a unit ball in a monotone norm ∥ · ∥. To see this, let Ω be such a unit ball, cen-
tered at the origin. By Proposition 2.3, Ω is then diagonally-determined with diagonal
[a, b] = [−1/∥1∥, 1/∥1∥] and has entrywise-nonnegative vector v. By Theorem 3.1, the
least Chebyshev polynomial in this case is given by

x 7→ P ∗(x) =

(
1

∥1∥

)n
1

2n−1
Tn (∥1∥⟨v,x⟩) .

Since 1
2n−1Tn is a monic univariate polynomial of degree n, the leading coefficients

of the least Chebyshev polynomial P ∗ are therefore obtained from the multinomial
expansion of x 7→ ⟨v,x⟩n. Since v is entrywise-nonnegative by assumption, it follows
that these leading coefficients are also nonnegative. In this sense our generalization
of monic polynomials to the multivariate case is a natural one, but is remains an
interesting question which diagonally-determined sets allow a entrywise-nonnegative
vector v.

A second point to mention, is that we have not explored the geometric and invariance
properties of diagonally-determined domains to any great extent in this paper, and this
deserves to be investigated further. The same may be said for the decision problem
of whether a given domain is diagonally-determined. If Ω is a compact semi-algebraic
set, one may formulate an algorithmic procedure to decide this question, as we did in
Section 5. An interesting special case is the (complexity) question: may one decide in
polynomial time is a given polyhedron is diagonally-determined?

Finally, we note that our main results in Theorems 3.1 and 4.8 are relatively straight-
forward to prove, once the correct formulations have been discovered. We ‘discovered’
these results by doing numerical experiments on least Chebyshev polynomials for the
Euclidean unit ball, using the tools described in our earlier paper [4]. Thus we observed
the structure of the atomic dual solution in Theorem 4.8, and we could infer the main
results from there. In the immortal words of Bernhard Riemann:2

If only I had the theorems! Then I should find the proofs easily enough.
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