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Abstract. We consider a new multivariate generalization of the classical monic

(univariate) Chebyshev polynomial that minimizes the uniform norm on the in-
terval [−1, 1]. Let Π∗

n be the subset of polynomials of degree at most n in d

variables, whose homogeneous part of degree n has coefficients summing up to 1.

The problem is determining a polynomial in Π∗
n with the smallest uniform norm on

a domain Ω, which we call a least Chebyshev polynomial (associated with Ω). Our

main result solves the problem for Ω belonging to a non-trivial class of domains,

defined by a property of its diagonal, and establishes the remarkable result that
a least Chebyshev polynomial can be given via the classical, univariate, Cheby-

shev polynomial. In particular, the solution can be independent of the dimension.

The result is valid for fairly general domains that can be non-convex and highly
irregular.

1. Introduction

Among its numerous properties, the Chebyshev polynomial Tn(x) = cos(n arccosx)
provides a solution for the best approximation to the monomial xn on the interval
[−1, 1] in the uniform norm. More precisely, the polynomial

q∗n(x) = xn − 21−nTn(x)

of degree n− 1 is the best polynomial of approximation to xn on [−1, 1]; that is

(1.1) q∗n = arg min
q∈Πn−1

sup
x∈[−1,1]

|xn − q(x)| ,

with Πn−1 being the vector space of univariate polynomials of degree at most n − 1.
In other words, the monic Chebyshev polynomial xn− q∗n is the least polynomial in the
sense that it has the least uniform norm among all monic polynomials of degree n.

There have been multiple extensions of Chebyshev polynomials to multivariate set-
tings from different angles. From the point of view of approximation, an immediate gen-
eralization is finding the best approximation to monomials [1, 2, 3, 4, 7, 6, 8, 12, 13, 14].

Namely, for d > 1, α ∈ Nd and |α| :=
∑d

i=1 αi = n, we consider the problem

(1.2) min
q∈Πd

n−1

sup
x∈Ω

|xα − q(x)| ,

where Πd
n−1 denotes the real polynomials of total degree at most n− 1 in the variables

x = (x1, . . . , xd), and where we define the monomial xα := xα1
1 . . . xαd

d . Since we will
deal with monomials of degree n throughout the paper, we introduce the notation

Nd
n :=

{
α ∈ (N0)

d : |α| = n
}
,
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where N0 = N∪{0} denotes the nonnegative integers. Thus Nd
n indexes all monomials

of degree exactly n in d variables.
Problem (1.2) can be regarded as a natural multivariate generalization of (1.1),

where Ω ⊂ Rd is a subset of Rd. While the interval [−1, 1] is a prototype of a compact
connected set of the real line, there is no ‘prototype’ in higher dimensions for such a
set. In the literature, this problem has been studied primarily on a few special regular
domains. In two variables, the problem (1.2) is solved for the square, the disk, and the
isosceles right triangle [3, 4, 6, 8, 12]. While the solution on the square can be extended
to the cube for d > 2, the problem is solved only for a few cases, mostly monomials of
lower degrees, on the ball and the simplex [1, 2, 13]. Moreover, the existing examples
indicate an increasing complexity, so much so that it does not appear possible to find
an analytic solution even for these regular domains.

Recently, in [5] we have proposed to investigate (1.2) for various choices of Ω ⊂ Rd

and α ∈ Nd
n by combining analytical tools with numerical tools from optimization (and

notably the so-called moment-SOS hierarchy). During this study, we have encoun-
tered an optimization problem that has initiated a change of view: Namely, instead of
studying the best polynomial of approximation to monomials, we can study the least
polynomial instead. While the two concepts are identical in one variable, they can be
quite different in higher dimensions, as seen from the definition below.

Definition 1.1. Let Πd
n denote the space of polynomials of total degree at most n in

d variables, and Π∗
n the subset of Πd

n that consists of polynomials of the form

x 7→ P (x) :=
∑
α∈Nd

n

aα xα +Q(x) with
∑
α∈Nd

n

aα = 1 and Q ∈ Πd
n−1.

Let Ω be a domain in Rd. We consider the optimization problem

(1.3) inf
P∈Π∗

n

∥P∥Ω, where ∥P∥Ω := sup
x∈Ω

|P (x)| .

If it exists, we call a minimizer P ∗ ∈ Π∗
n of (1.3) a least Chebyshev polynomial of

degree n on the domain Ω.

For d = 1, there is only one monomial of degree n. In the case d > 1, every element
of Π∗

n is ‘monic’ and the monomial xα in (1.1) is only one among many possible choices
in Π∗

n. However, rather than approximating a fixed monomial by polynomials of lower
degree, the problem (1.3) requires finding a polynomial that has the least norm among
all polynomials in Π∗

n. As far as we are aware, this polynomial has not been considered
in the literature.

Contribution. The main purpose of this paper is to report our findings on the op-
timization problem (1.3). It turns out, much to our surprise, that the problem (1.3)
can be solved analytically for a fairly general family of domains Ω in Rd for all d ≥ 2.
This family of domains will be referred to as diagonally determined.

Organization of this paper. The paper is organized as follows. We start by defining
and describing several examples of diagonally determined domains in Section 2. Our
main results are presented in Section 3, where we describe the least polynomial for
a diagonally determined domain. We discuss the dual problem of (1.3) in Section 4
and show that it too has a closed-form solution in the case of diagonally determined
sets. We also rephrase this result for the dual problem in the framework of extremal
signatures.
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2. Diagonally determined domains

We define the diagonal of a domain Ω ⊂ Rd as the set diag(Ω) := {t ∈ R : t1 ∈ Ω},
where 1 denotes the all-ones vector in Rd. For two vectors x,y ∈ Rd, we use ⟨x,y⟩ for
their standard inner product.

Definition 2.1. We call a set Ω ⊂ Rd diagonally determined if the following two
conditions hold:

(1) The diagonal of Ω is an interval, say diag(Ω) = [a, b], and
(2) there exists v ∈ Rd such that ⟨v,1⟩ = 1 and ⟨v,x⟩ ∈ [a, b] for all x ∈ Ω.

Importantly, Definition 2.1 covers domains that could be non-convex, non-compact,
and even highly irregular. Figure 1 gives an example of a non-convex diagonally
determined set in R2.

x1

x2

0 1 2 3 4

1

2

3

Figure 1. Example of a diagonally determined, non-convex set.
Here, diag(Ω) = [1, 3], and v = (1, 0).

As a first observation, a dilation of a diagonally determined set is again diagonally
determined.

Lemma 2.2. If Ω ⊂ Rd is diagonally determined with diag(Ω) = [a, b] and vector v,
then, for any r > 0, the dilation

rΩ := {rx : x ∈ Ω}
is also diagonally determined with diag(rΩ) = [ra, rb] and vector v.

Proof. The proof is an immediate consequence of Definition 2.1. □

We will now show that balls in Rd (in any norm) are examples of diagonally deter-
mined sets.

Proposition 2.3. Consider a ball of radius r in Rd centered at the origin:

Ω := {x ∈ Rd : ∥x∥ ≤ r},
where ∥ · ∥ denotes any norm on Rd. Then Ω is a diagonally determined set.

Proof. We prove the statement for unit balls; the required result then follows from
Lemma 2.2.

Let ∥ · ∥∗ denote the usual dual norm of ∥ · ∥, namely

∥u∥∗ = sup{⟨u,x⟩ : ∥x∥ = 1}, u ∈ Rd.
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Let v = u/∥1∥, where u ∈ Rd is ‘dual’ to 1, in the sense that ∥u∥∗ = 1 and
⟨u,1⟩ = ∥1∥. We then have diag(Ω) = [−b, b] with b = 1/∥1∥, ⟨u/∥1∥,1⟩ = 1, and
|⟨u/∥1∥,x⟩| ≤ (1/∥1∥)∥u∥∗∥x∥ ≤ 1/∥1∥ = b, so that ⟨u/∥1∥,x⟩ ∈ [−b, b] = [a, b] for
all x ∈ Ω. □

By Definition 2.1, we have the following immediate corollary.

Corollary 2.4. Assume Ω ⊂ Rd is a subset of a ball in Rd in any norm, centered at
the origin, and that the diagonal of Ω coincides with the diagonal of the ball. Then Ω
is a diagonally determined set.

To illustrate this corollary, the example in Figure 2 shows a non-convex subset of a
unit (Euclidean) ball, that has the same diagonal as the ball.

x1

x2

0 1
2 1

1
2

1

Figure 2. Example of a diagonally determined, non-convex set.

Here, diag(Ω) =
[
− 1√

2
, 1√

2

]
, and v =

(
1
2 ,

1
2

)
.

Example 2.5. It is insightful to consider the specific example of the unit ball of the owl
norm (ordered weighted ℓ1-norm) defined relative to weights w1 ≥ w2 ≥ · · · ≥ wd ≥ 0
by

∥x∥owl =
d∑

i=1

wix
∗
i ,

with (x∗
1, . . . , x

∗
d) being the nonincreasing rearrangement of (|x1|, . . . , |xd|). Note that

∥1∥owl =
∑d

i=1 wi =: W , so that b = 1/W . Letting w = (w1, . . . , wd), we set v =

w/W , since ⟨w/W,1⟩ = (
∑d

i=1 wi)/W = 1 and, for ∥x∥owl ≤ 1,

|⟨w/W,x⟩| =

∣∣∣∣∣
n∑

i=1

wixi

∣∣∣∣∣ /W
≤

(
n∑

i=1

wi|xi|

)
/W

≤

(
n∑

i=1

wix
∗
i

)
/W

≤ 1/W = b.
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The intersection of certain balls in Rd with the nonnegative orthant in Rd are also
diagonally determined, as the next result shows.

Proposition 2.6. Assume ∥ · ∥ is a norm on Rd with dual norm ∥ · ∥∗, and that the
following holds: there is an entrywise-nonnegative vector u ∈ Rd

+ such that ∥u∥∗ = 1
and ⟨u,1⟩ = ∥1∥.

Further assume Ω ⊂ Rd has diagonal diag(Ω) = [0, r/∥1∥] for some r > 0, and, for
all x ∈ Ω, x ≥ 0 and ∥x∥ ≤ r. Then Ω is a diagonally determined set with vector
v = u/∥1∥.

Proof. We again prove the statement for the case r = 1; the result for general r > 0
then follows from Lemma 2.2. Setting v = u/∥1∥, one has ⟨v,1⟩ = 1. Moreover, for
x ∈ Ω, ⟨v,x⟩ ≥ 0, since x,v ≥ 0, and

⟨v,x⟩ = 1

∥1∥
⟨u,x⟩ ≤ 1

∥1∥
∥u∥∗∥x∥ ≤ 1

∥1∥
,

so that ⟨v,x⟩ ∈ diag(Ω) for all x ∈ Ω. □

The assumption on the norm in Proposition 2.6 is met by, for example, all ℓp-norms,
and the owl-norm in Example 2.5. As a simple corollary of the proposition, the simplex

Ω =

{
x ∈ Rd : x ≥ 0,

d∑
i=1

xi ≤ 1

}
,

is diagonally determined, since it is the intersection of the unit ℓ1-ball with the non-
negative orthant. See Figure 3 for an illustrative example of Proposition 2.6.

x1

x2

0 1
2 1 3

2

1
2

1

3
2

Figure 3. Example to illustrate Proposition 2.6. Here, diag(Ω) =
[0, b], with b ≈ 1.35. Moreover, Ω is contained in the ℓ1-ball of radius
r = bd ≈ 2.7, intersected with the nonnegative quadrant.

3. Least Chebyshev polynomial for a diagonally determined domain

In this section, and with Ω being a domain in Rd, we consider the problem of finding
a least polynomial P ∗ ∈ Π∗

n such that

∥P ∗∥Ω = inf {∥P∥Ω : P ∈ Π∗
n} ,

for the special case where Ω is diagonally determined.
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Theorem 3.1. Let Ω be diagonally determined with vector v and diag(Ω) = [a, b].
Then

(3.1) inf {∥P∥Ω : P ∈ Π∗
n} =

(
b− a

2

)n
1

2n−1
,

and the infimum is attained by the polynomial

(3.2) x 7→ P ∗(x) :=

(
b− a

2

)n
1

2n−1
Tn

(
−1 + 2

⟨v,x⟩ − a

b− a

)
.

Proof. Let P ∈ Π∗
n, say

P (x) =
∑
α∈Nd

n

aα xα +Q(x) with
∑
α∈Nd

n

aα = 1and Q ∈ Πd
n−1.

Then P (t, . . . , t) = tn+qn−1(t), where qn−1(t) = Q(t, . . . , t) is a univariate polynomial
of degree at most n− 1 in the single variable t. Hence,

(3.3) ∥P∥Ω ≥ max
a≤t≤b

|tn + qn−1(t)| ≥
(
b− a

2

)n
1

2n−1
,

where we have used a classical result in one variable, and equality in the last inequality
is attained by choosing qn−1 such that tn+qn−1(t) is the rescaled Chebyshev polynomial
in the right-hand side of (3.2).

Moreover, as Ω is diagonally determined, then for all x ∈ Ω, one has ⟨v,x⟩ ∈ [a, b],
and therefore

∥P ∗∥Ω =

(
b− a

2

)n
1

2n−1
max
x∈Ω

∣∣∣∣Tn

(
−1 + 2

⟨v,x⟩ − a

b− a

)∣∣∣∣ ≤ (b− a

2

)n
1

2n−1
.

Finally, we need to show that P ∗ ∈ Π∗
n. First note that t 7→ P ∗(t1) is a monic

univariate polynomial in t, since ⟨v,1⟩ = 1. On the other hand, we may write P ∗ in
the form

P ∗(x) =
∑
α∈Nd

n

a∗α xα +Q∗(x) with Q∗ ∈ Πd
n−1,

so that

P ∗(t1) =
∑
α∈Nd

n

a∗αt
n +Q∗(t1).

Thus
∑

α∈Nd
n
a∗α = 1, and therefore P ∗ ∈ Π∗

n, as required. □

The minimal value in (3.1) does not dependent explicitly on the dimension d, but
the diagonal [a, b] may. For example, if Ω is the unit Euclidean ball in Rd, then

−a = b = 1/
√
d.

Example 3.2. For the cube Ω = [−1, 1]d, Theorem 3.1 shows that ∥P ∗∥Ω = 2−n+1.
In contrast, for every α ∈ Nd with |α| = n, we have

inf
P∈Πd

n−1

∥xα − P∥[−1,1]d = 2−n+d,

as shown in [12], which depends on the dimension d.

Since an optimal solution of problem (1.3) is given in terms of the univariate Cheby-
shev polynomial Tn in Theorem 3.1, the reader may wonder if this optimal solution is
in fact unique. This turns out to be not the case, as the next example shows.



LEAST CHEBYSHEV POLYNOMIALS 7

Example 3.3. The simplex △d = {x ∈ Rd : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xd ≤ 1 }
is diagonally determined with v = (1, 0, . . . , 0), and diag(△d) = [0, 1]. Hence, by
Theorem 3.1,

∥P ∗∥△d = inf
{
∥P∥△d : P ∈ Π∗

n

}
=

(
1

2

)n
1

2n−1
= 2−2n+1

is independent of the dimension d. Moreover, one has P ∗(x) = 2−2n+1Tn(2x1 − 1),
which is univariate. Another valid choice for v is v = (0, 1, 0, . . . , 0) that leads to a
different least Chebyshev polynomial, namely x 7→ 2−2n+1Tn(2x2 − 1).

We point out that the requirement
∑

α∈Nd
n
aα = 1, is susceptive under linear change

of variables other than a translation. For instance, the triangle △̂2 = {x : x1 ≥ 0, x2 ≥
0, x1+x2 ≤ 1 }, is a mirror image of △2 under x2 7→ 1−x2. However, under the linear
change of variables x2 7→ 1 − x2, the leading monomial a0x

2
1 + a1x1x2 + a2x

2
2 of a

polynomial in Π∗
2 becomes, a0x

2
1−a1x2x2+a2x

2
2, which is no longer an element of Π∗

2.

4. The dual framework and signatures

In this section we consider the dual problem of (1.3). Our goal is to show that, in
the special case of diagonally determined domains, the dual problem has a closed-form
solution. Moreover, we will construct a dual solution that is atomic (discrete), and
supported on n+ 1 points.

4.1. The dual problem. With Ω being a domain in Rd, let C(Ω) be the space of
continuous functions on Ω, and let C(Ω)∗ be the dual space of C(Ω). For compact Ω,
one has the following, strong duality result for problem (1.3).

Theorem 4.1. Let Ω ⊂ Rd, and consider the dual problem of (1.3), namely
(4.1)

γ∗ := sup
γ∈R

L∈C(Ω)∗

{
γ : L|Πd

n−1
= 0, ∥L∥C(Ω)∗ = 1, and L(x 7→ xα) = γ for all α ∈ Nd

n

}
,

where the norm of L is defined as

∥L∥C(Ω)∗ = sup
h∈C(Ω)

{|Lh| : ∥h∥Ω ≤ 1}.

One has γ∗ ≤ inf {∥P∥Ω : P ∈ Π∗
n} (weak duality), and γ∗ = inf {∥P∥Ω : P ∈ Π∗

n}
if Ω is compact (strong duality).

One may derive this result directly through conic linear programming duality theory,
e.g. [11, Proposition 2.9], and we will omit the proof here.

It is insightful, though, to make a link with classical Chebyshev approximation. To
this end, we denote an optimal solution of problem (1.3) by

(4.2) x 7→ P ∗(x) =
∑
α∈Nd

n

a∗αx
α +Q∗(x) such that

∑
α∈Nd

n

a∗α = 1, Q∗ ∈ Πd
n−1.

Note that P ∗ ∈ Π∗
n. Clearly,

∥P ∗∥Ω = min
Q∈Πd

n−1

∥∥∥∥∥∥
∑
α∈Nd

n

a∗αx
α +Q(x)

∥∥∥∥∥∥
Ω

,



8 M. DRESSLER, S. FOUCART, M. JOLDES, E. DE KLERK, J. B. LASSERRE, AND Y. XU

while the latter problem is the classical Chebyshev problem of approximating the
homogeneous polynomial x 7→

∑
α∈Nd

n
a∗αx

α from Πd
n−1.

Recall the strong duality result for the classical Chebyshev approximation problem
as given in the paper by Rivlin and Shapiro [10, Corollary 2].1

Theorem 4.2. For any f ∈ C(Ω), with Ω compact, one has the following

(4.3) min
Q∈Πd

n−1

∥f −Q∥Ω = max
L∈C(Ω)∗

{
L(f) : L|Πd

n−1
= 0, ∥L∥C(Ω)∗ = 1

}
.

From this, we can immediately deduce the following relation between the two dual
problems.

Lemma 4.3. For f(x) =
∑

α∈Nd
n
a∗αx

α, any optimal solution of problem (4.1) is also

optimal for the dual problem in (4.3).

Proof. Let L∗ denote an optimal solution of problem (4.1). Then L∗ is feasible for the
dual (maximization) problem in (4.3). Moreover,

L∗(f) = L∗

∑
α∈Nd

n

a∗αx
α

 =
∑
α∈Nd

n

a∗αL
∗(xα) =

∑
α∈Nd

n

a∗αγ
∗ = γ∗ = ∥P ∗∥Ω.

This yields the result. □

In the next subsection, we review the fact that the optimal dual solutions may be
assumed to be atomic (discrete) without loss of generality.

4.2. Atomic dual solutions and signatures. We first recall a classical interpolation
formula for linear functionals, as given in [10, Corollary 3].

Theorem 4.4. Let L be any linear functional on a finite dimensional subspace V of
C(Ω), with Ω compact. Then there exist points ω1, . . . , ωr ∈ Ω with r ≤ dim(V ), and
non-zero scalars τ1, . . . , τr, such that, defining the point evaluation functionals

Lωi
(f) = f(ωi) i = 1, . . . , r,

one has

(4.4) L =

r∑
i=1

τiLωi
, ∥L∥ =

r∑
i=1

|τi|.

As a consequence, there exists a discrete (atomic) solution to problem (4.1). We
give a proof below only for the sake of completeness and later reference — the type of
argument we use is classical.

Corollary 4.5. There exist points ω1, . . . , ωr ∈ Ω with r ≤ dim(Πd
n), and non-zero

scalars τ1, . . . , τr with
∑r

i=1 |τi| = 1, such that an optimal solution of problem (4.1)
is given by (4.4). Moreover, the points ω1, . . . , ωr are extremal points of any optimal
solution P ∗ to problem (1.3), i.e.,

|P ∗(ωi)| = ∥P ∗∥Ω for all i = 1, . . . , r.

1In [10, Corollary 2], the objective is in fact given as sup |L(f)|, but the absolute value may be
omitted w.l.o.g., since L is feasible for the dual problem if and only if −L is feasible.
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Proof. The first statement follows immediately from Theorem 4.4, using V = Πd
n. It

remains to show that the points ω1, . . . , ωr are extremal points of any optimal solution
P ∗ to problem (1.3). Now let L∗ denote an optimal solution of problem (4.1), so that

(4.5) L∗ =

r∑
i=1

τiLωi
,

r∑
i=1

|τi| = 1.

By Lemma 4.3, L∗ is also an optimal solution for the dual problem in (4.3). Thus,
for any optimal solution P ∗ of problem (1.3), one has

∥P ∗∥Ω = L∗(P ∗) =

r∑
i=1

τiP
∗(ωi).

Since
∑r

i=1 |τi| = 1, ∥P ∗∥Ω is a weighted average of the values P ∗(ωi) with τi > 0 and
−P ∗(ωi) with τi < 0. As a consequence, we have

∥P ∗∥Ω =

{
P ∗(ωi) if τi > 0,

−P ∗(ωi) if τi < 0,

completing the proof. □

The extremal points in Corollary 4.5 are usually called the support of an extremal
signature, defined along the line of [9, Section 2.2] as follows.

Definition 4.6. A signature with finite support S ⊂ Ω is simply a (partition) function
from S to {±1}. A signature σ with support S is said to be extremal for a subspace
V ⊂ C(Ω) if there exist weights λω > 0, ω ∈ S, such that

∑
ω∈S λωσ(ω)v(ω) = 0

for all v ∈ V . A signature σ with support S is said to be associated with a function
g ∈ C(Ω) if S is included in the set {ω ∈ Ω : |g(ω)| = ∥g∥Ω} of extremal points of g
and if σ(ω) = sgn(g(ω)) for all ω ∈ S.

Thus, the result of Corollary 4.5 may be restated as the existence of a signature
with support S = {ω1, . . . , ωr} where r ≤ dim(Πd

n). This signature is extremal for
Πd

n−1, and associated with every optimal solution of problem (1.3). Therefore, we will
simply refer to an optimal signature for problem (1.3). Formally we have the following
result.

Proposition 4.7. Any atomic solution of the dual problem (4.1), say L∗ of the form
(4.5), gives rise to an optimal signature for problem (1.3), by setting:

S = {ω1, . . . , ωr}, σ(ωi) = sgn(τi), λi = |τi|, i = 1, . . . , r.

This is essentially a reformulation of the well-known characterization of best ap-
proximation by polynomials in terms of the extremal signature ([9, Theorem 2.6]) for
the dual problem.

4.3. Signatures for diagonally determined domains. For the special case where
Ω is a diagonally determined set, we may now infer information about an optimal
signature from Theorem 3.1 and Proposition 4.7. The idea of the proof is to construct
an atomic optimal solution for the dual problem (4.1).

Theorem 4.8. Let Ω be a diagonally determined set with diag(Ω) = [a, b] and vector
v. Then, an optimal signature for problem (1.3) is defined by a set S, of n+ 1 points

(4.6) ωj = a1+
b− a

2

(
1 + cos

(
(j − 1)π

n

))
1 for j = 1, . . . , n+ 1,
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where 1 again denotes the all-ones vector in Rd, together with the partition function
σ : S → {−1, 1}, given by

σ(ωj) =

{
1 if j is odd

−1 if j is even,

as well as λ1 = λn+1 = 1
2 , and λi = 1 if i = 2, . . . , n.

Proof. By Theorem 3.1, an optimal solution to problem (1.3) is given by the polynomial
P ∗ in (3.2), namely

P ∗(x) =

(
b− a

2

)n
1

2n−1
Tn

(
−1 + 2

⟨v,x⟩ − a

b− a

)
.

Using the well-known fact that the extremal points of Tn are given by the Gauss-
Lobatto-Chebyshev points ξj := cos ((j − 1)π/n) for j = 1, . . . , n+1, we have that the
points listed in (4.6) are extremal points of P ∗. Indeed, using ⟨v,1⟩ = 1, one has

⟨v, ωj⟩ = a+
b− a

2

(
1 + cos

(
(j − 1)π

n

))
for j = 1, . . . , n+ 1,

which is the same as

−1 + 2
⟨v, ωj⟩ − a

b− a
= ξj for j = 1, . . . , n+ 1.

Next, we will construct an atomic solution of the dual problem (4.1), that will lead
to the required optimal signature, by Proposition 4.7.

To this end, define the linear operator

L∗ =
1

n+ 1

n+1∑
i=1

(−1)i+1λiLωi .

We claim that L∗ is an optimal solution of the dual problem (4.1). We first verify
feasibility. We will show that L∗ vanishes on Πd

n−1, as required, by using the Gauss-
Lobatto-Chebyshev quadrature formula, which implies, for k < n:

n+1∑
j=1

λjTn(ξj)Tk(ξj) = 0,

due to the orthogonality of Chebyshev polynomials. Using Tn(ξj) = (−1)1+j yields

(4.7) L∗(Tk) =

n+1∑
j=1

λj(−1)1+jTk(ξj) = 0 if k < n.

Thus L∗ vanishes on univariate (and separable) polynomials in Πd
n−1. For the general

case, it suffices to consider d = 2 and the monomial p(x1, x2) = Tk1
(x1)Tk2

(x2), where
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k1 + k2 < n, and show that L∗(p) = 0. To this end, note that

L∗(p) =

n+1∑
j=1

λj(−1)1+jTk1
(ξj)Tk2

(ξj)

=

n+1∑
j=1

λj(−1)1+j 1

2
[T|k1−k2|(ξj) + Tk1+k2

(ξj)]

=
1

2

n+1∑
j=1

λj(−1)1+jT|k1−k2|(ξj) +
1

2

n+1∑
j=1

λj(−1)1+jTk1+k2(ξj) = 0,

using (4.7). The result for general d now follows by induction.
Secondly, we verify that L∗(xα) is independent of α, when |α| = n, say L∗(xα) = γ̂

whenever α ∈ Nd
n. This follows immediately from the construction of L∗, since all

coordinates of the vectors ωi are equal for all i = 1, . . . , n + 1. Finally, to prove
optimality, we note that, for P ∗ written in the form (4.2),

∥P ∗∥Ω = L∗(P ∗) =
∑
α∈Nd

n

a∗αL
∗(xα) = γ̂

∑
α∈Nd

n

a∗α = γ̂,

so, by the weak duality theorem, L∗ is indeed optimal. The required result now follows
from Proposition 4.7. □

Remark 4.1. It is interesting to note that — for diagonally determined sets — there
exists an optimal signature for problem (1.3) with support size n+1. One can compare

this to the general result for compact Ω of a signature support size of dim(Πd
n) =

(
n+d
d

)
.

Remarkably the minimum support size is independent of d in the diagonally determined
case. Moreover, we did not use compactness of Ω in the proof of Theorem 4.8, whereas
compactness is needed for the general bound. Finally, note that the optimal signature
in Theorem 4.8 depends on Ω only through its diagonal [a, b], and is independent of v.
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