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ABSTRACT
We introduce an iterative algorithm designed to find row-sparse
matrices X ∈ RN×K solution of an underdetermined linear
system AZ = Y , where A ∈ Rm×N and Y ∈ Rm×K are
given. In the case K = 1, the algorithm is a simple combina-
tion of popular Compressive Sensing algorithms, which we had
previously coined Hard Thresholding Pursuit. After recalling
the main results concerning this algorithm, we generalize them
to the case K ≥ 1 for the new Simultaneous Hard Thresholding
Pursuit algorithm. In particular, we prove that any s-row-sparse
matrix can be exactly recovered using a finite number of itera-
tions of the algorithm provided that the 3sth Restricted Isometry
Constant of the matrix A satisfies δ3s < 1/

√
3. We also discuss

the cost of recovering matrices at once via Simultaneous Hard
Thresholding Pursuit versus recovering their columns one by
one via Hard Thresholding Pursuit.

Keywords— compressive sensing, sparse recovery, iterative
algorithms, thresholding, joint sparsity

1. INTRODUCTION

A fundamental problem in Compressive Sensing is to find linear
measurement schemes allowing for the representation of sparse
vectors using an information level close to the sparsity level
rather than the full dimension of the vectors. Such measurement
schemes exist, as shown by probabilistic methods. Setting this
problem aside, the other fundamental problem is to find efficient
reconstruction schemes allowing for the recovery of sparse vec-
tors from their measurement vectors. Mathematically speaking,
given a measurement matrix A ∈ Rm×N with m � N , and
given a measurement vector y = Ax ∈ Rm associated with an
s-sparse vector x ∈ RN (a vector that has at most s nonzero
entries), we wish to access this vector in a numerically tractable
way. A very popular strategy — the `1-minimization — con-
sists in solving the convex optimization program (which can be
recast as a linear optimization program)

minimize
z∈RN

‖z‖1 subject to Az = y. (1)

There are other popular strategies, for instance the Subspace
Pursuit (SP) [2], the Compressive Sampling Matching Pursuit
(CoSaMP) [9], and the Iterative Hard Thresholding (IHT) [1]
algorithms, to name a few. In [3], we have introduced a simple

combination of the latter algorithms, which we called the Hard
Thresholding Pursuit (HTP) algorithm. It may be viewed as
the Iterative Hard Thresholding algorithm where each iteration
is augmented with a debiasing step, shown to improve perfor-
mance in other algorithms as well. It reads:

Start with an s-sparse x0 ∈ CN , say x0 = 0, and iterate the
steps

S[n+1] =
{

indices of s largest
∣∣(x[n] +A>(y −Ax[n])

)
i

∣∣},
(HTP1)

x[n+1] = argmin
{
‖y −Az‖2, supp(z) ⊆ S[n+1]

}
,

(HTP2)

until a stopping criterion is met. This criterion is chosen to be
S[n+1] = S[n], since no new outputs are created afterwards.
We became aware that the algorithm has (unsurprisingly) been
suggested in other places [5, 8, 6], but [3] presents in particu-
lar a simple analysis in terms of Restricted Isometry Constants
that was not available before. We recall that the sth Restricted
Isometry Constant δs = δs(A) of the matrix A is defined as the
smallest quantity δ ≥ 0 such that

(1− δ)‖z‖22≤‖Az‖22≤ (1 + δ)‖z‖22, all s-sparse z ∈ RN .

This turns out to be a fruitful concept, since it allows to es-
tablish s-sparse recovery for a wide range of algorithms using
the optimal number m � s ln(N/s) of linear measurements.
Typically, a condition of the type δt < δ∗ for some specified
δ∗ and some t related to s guarantees that all s-sparse vectors
x ∈ RN are recoverable from y = Ax ∈ Rm via a given al-
gorithm. For instance, we mention the conditions δ2s < 0.4652
for `1-minimization, δ3s < 0.5 for IHT, and δ4s < 0.3843 for
CoSaMP, see [4], while keeping in mind that these are subject to
improvements. Since the conditions δt < δ∗ are only known to
be satisfied for random matrices for whichm � (t/δ2

∗) ln(N/t),
they can heuristically be assessed by the smallness of the ratio
t/δ2
∗ . As such, the upcoming sufficient condition (2) for HTP is

preferable to the ones cited above. It has to be noted that this
condition is also sufficient for the IHT algorithm, and in fact for
other fast variants of the HTP algorithm where one performs
only a few gradient descent steps instead of solving the linear
system coming out of (HTP2), see [3]. It also has to be noted
that the HTP algorithm, like all algorithms mentioned here, is
stable with respect to sparsity defect and robust with respect to
measurement error. Indeed, the main theorem of [3] reads:



Theorem 1. Suppose that the 3sth Restricted Isometry Con-
stant of the matrix A ∈ Rm×N satisfies

δ3s <
1√
3
≈ 0.57735. (2)

Then, for every x ∈ RN and every e ∈ Rm, if S is an index set
of s largest entries of x in absolute value, the sequence (x[n])
defined by (HTP) with y = Ax + e satisfies, for all n ≥ 0,

‖x[n] − xS‖2 ≤ ρn‖x[0] − xS‖2 + τ
1− ρn

1− ρ
‖AxS + e‖2,

where τ ≤ 5.15 and

ρ :=

√
2δ2

3s

1− δ2
2s

< 1.

To retrieve the ideal case discussed in this paper, we just set
xS = 0 and e = 0. In this case, we have shown in [3] that the
original vector x ∈ RN is exactly recovered after at most

nρ(x) :=

⌈
ln
(√

2/3 ‖x‖2
/
ξ)

ln
(
1/ρ
) ⌉

+ 1 (3)

iterations of the algorithm started with x[0] = 0. Here ξ de-
notes the smallest nonzero absolute value of entries of x. Al-
though the convergence was not established in the general case,
we pointed out that the sequence (x[n]) is eventually periodic,
and we could estimate the distance between x and any cluster
point of the sequence (x[n]). The following result was derived
in [3] using Theorem 1 to show that the HTP algorithm yields
error estimates similar to the ones available for `1-minimization.

Corollary 1. Suppose that the matrix A ∈ Rm×N satisfies
δ6s < 1/

√
3. Then, for any x ∈ RN and any e ∈ Rm, each

cluster point x? of the sequence (x[n]) defined by (HTP) with s
replaced by 2s and with y = Ax+e satisfies, for all 1 ≤ p ≤ 2,

‖x− x?‖p ≤
C

s1−1/p
σs(x)1 +Ds1/2−1/p‖e‖2,

where the constants C and D depend only on δ6s.

2. ROW-SPARSE RECOVERY

Let us suppose that several sparse vectors x1, . . . ,xK ∈ RN are
to be recovered from y1 = Ax1, . . . ,yK = AxK ∈ Rm, with
the additional assumption that x1, . . . ,xK are jointly sparse, in
other words that x1, . . . ,xK are all supported on a set of small
cardinality. Note that complex vectors x ∈ CN measured with
a matrix A ∈ Rm×N constitute a typical example for K = 2.
Intuitively, we anticipate a gain in computational complexity
by recovering x1, . . . ,xK all at the same time rather than one
by one. This fact is discussed after Theorem 2. For now, we
reformulate the problem by defining the N ×K matrix

X =
[
x1 x2 · · · xK

]
.

The joint sparsity assumption just says that X is s-row-sparse,
i.e., that its row-support

supp(X) :=
{
i : X(i) 6= 0

}
has cardinality at most s. Here X(i) stands for the ith row fo X ,
and in general the notations M(1), . . . ,M(k) and M1, . . . ,M`

will be used to represent the rows and columns, respectively, of
a matrix M ∈ Rk×`, so that

M =

M(1)

...
M(k)

 =
[
M1 · · · M`

]
.

The Frobenius norm of M will also be used, that is

‖M‖2F =

k,∑̀
i,j=1

m2
i,j =

k∑
i=1

‖M(i)‖22 =
∑̀
j=1

‖Mj‖22.

Note that this norm is derived from the Frobenius inner product

〈M,M ′〉F =

k,∑̀
i,j=1

mi,jm
′
i,j =

k∑
i=1

〈M(i),M
′
(i)〉 =

∑̀
j=1

〈Mj ,M
′
j〉.

With these notations set up, we first recall that solving the con-
vex optimization problem

minimize
Z∈RN×K

N∑
i=1

‖Z(i)‖2 subject to AZ = Y (4)

allows to recover the s-row-sparse matrix X ∈ RN×K from
Y := AX ∈ Rm×K as soon as the measurement matrix A
has small Restricted Isometry Constants. It is indeed known
that successfully recovering all s-row-sparse X ∈ RN×K by
solving (4) is exactly equivalent to successfully recovering all s-
sparse x ∈ RN by solving (1), see [7]. As another strategy for
the recovery of s-row-sparse matrices X from Y := AX , we
are now suggesting a natural extension of the HTP algorithm,
which we call Simultaneous Hard Thresholding Pursuit. The
implementation of this algorithm can be found on the author
web page at
www.math.drexel.edu/˜foucart/software.htm
It reads:

Start with an s-row-sparse X [0] ∈ RN×n, say X [0] = 0, and
iterate the steps

S[n+1] =
{

indices of s largest
∥∥(X [n]+A>(Y−AX [n])

)
(i)

∥∥
2

}
,

(SHTP1)

X [n+1] =argmin
{
‖Y −AZ‖F , supp(Z) ⊆ S[n+1]

}
,
(SHTP2)

until the stopping criterion S[n+1] = S[n] is met. The conver-
gence of the SHTP algorithm is guaranteed by the following
result. A stable and robust version, in the spirit of Theorem 1,
also holds in this context.



Theorem 2. Suppose that the 3sth Restricted Isometry Con-
stant of the matrix A ∈ Rm×N satisfies

δ3s <
1√
3
≈ 0.57735.

Then, for every s-row-sparse X ∈ RN , the sequence (X [n])
defined by (SHTP) with Y = AX satisfies, for all n ≥ 0,

‖X [n] −X‖F ≤ ρn ‖X [0] −X‖F . (5)

The proof of this result appears in the next section. As in [3],
it is possible to show thatX ∈ RN×K is exactly recovered after
at most

n′ρ(X) :=

⌈
ln
(√

2/3 ‖X‖F
/

Ξ)

ln
(
1/ρ
) ⌉

+ 1 (6)

iterations of the algorithm started with X [0] = 0. Here Ξ de-
notes the smallest nonzero `2-norm of rows of X . For instance,
if the vectors x1, . . . ,xK have nonzero entries that are almost
all similar, say equal to 1, except for some very small entries at
non-overlapping positions, say one 0 < ε � 1 per vector, then
the number of iterations (6) for the SHTP run is much smaller
than the number of iterations (3) for any of the HTP runs, since

‖X‖2F
Ξ2

=
K(s− 1 + ε2)

K − 1 + ε2
<
‖xk‖22
ξ2
k

=
s− 1 + ε2

ε2
.

In fact, we can observe that n′ρ(X) never exceeds the largest
nρ(xk). Indeed, we would otherwise have, for all 1 ≤ k ≤ K,

‖X‖2F
Ξ2

>
‖xk‖22
ξ2
k

, i.e., ‖X‖2F ξ2
k > Ξ2 ‖xk‖22.

Summing over k and simplifying by ‖X‖2F =
∑K
k=1 ‖xk‖22

would give the contradiction
K∑
k=1

ξ2
k > Ξ2.

Let us now examine the cost per iteration of the SHTP algorithm
in terms of number of multiplications and divisions. This cost
can be split into two contributions:

• NK(s + 1) ≈ NKs to form the row-norms in (SHTP1)
— note that A>Y and A>A are calculated once and for
all at the beginning of the algorithm;

•
∑s−1
`=1 `

2 + K
∑s−1
`=1 ` ≈ s2(2s + 3K)/6 to solve the K

simultaneous s × s systems of normal equations arising
in (SHTP2) using Gaussian elimination.

The cost per iteration of the basic HTP algorithm is obtained
by substituting K = 1 above. We then observe that, thanks to
the second step of the algorithm, a run of SHTP cost less per
iteration than the K runs of HTP , since

s2(2s+ 3K)

6
≤ Ks2(2s+ 3)

6
.

The simple numerical experiment of Fig. 1, carried out for
Gaussian measurement matrices A and Gaussian sparse vectors
x1, . . . ,xK , confirms that one run of SHTP is faster than K
runs of HTP. It is also more reliable, according to the intuition
that more information about the support is available.
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Fig. 1. Comparison of HTP and SHTP on 400 trials

3. PROOF OF THEOREM 2

This section is dedicated to the proof of the main theorem of
this paper. The argument closely follows the one given in [3]
for the HTP algorithm. It makes use of the following simple
characterization of Restricted Isometry Constants, known for
K = 1, although not used very often. Below, the notations
M(S), respectively MS , stand for the submatrices of a matrix
M formed by the rows, respectively by the columns, indexed
by a set S.

Lemma 1. Given a matrix A ∈ Rm×N and integers s,K ≥ 1,

δs(A) = max
card(S)=s

max
Z∈Rs×K ,‖Z‖F =1

‖(I −A>SAS)Z‖F .

Proof. This is just a consequence of the known characterization

δs(A) = max
card(S)=s

‖I −A>SAS‖2→2,

and the observation that, for any matrix M ∈ Rk×`,

‖M‖2→2 = max
Z∈R`×K ,‖Z‖F =1

‖MZ‖F .

This observation follows, on the one hand, from

‖M‖2→2 = max
‖z‖2=1

‖Mz‖2 = max
‖z‖2=1

‖M
[
z 0 · · · 0

]
‖F

≤ max
‖Z‖F =1

‖MZ‖F ,

and on the other hand from

‖MZ‖2F = ‖
[
MZ1 · · · MZ`

]
‖2F =

∑̀
j=1

‖MZj‖22

≤
∑̀
j=1

‖M‖22‖Zj‖22 = ‖M‖22 ‖Z‖2F ,

after taking the maximum over Z.

With this lemma at hand, we now proceed with the proof of
Theorem 2. The first step of the argument is a consequence of



(SHTP2), which says that AX [n+1] is the best approximation to
Y from the space {AZ, supp(Z) ⊆ S[n+1]}. Therefore, it is
characterized by the orthogonality condition

〈AX [n+1] − Y,AZ〉F = 0 whenever supp(Z) ⊆ S[n+1].

Since Y = AX , this may be rewritten as

〈X [n+1] −X,A>AZ〉 = 0 whenever supp(Z) ⊆ S[n+1].

We derive in particular

‖(X [n+1] −X)(S[n+1])‖2F
=
〈
X [n+1] −X, (X [n+1] −X)(S[n+1])

〉
F

=
〈
X [n+1] −X, (I −A>A)

(
(X [n+1] −X)(S[n+1])

)〉
F
.

With S := supp(X) and T [n+1] := S ∪ S[n+1], we obtain

‖(X [n+1] −X)(S[n+1])‖2F
=
〈
X [n+1]−X, (I−A>T [n+1]AT [n+1])

(
(X [n+1]−X)(S[n+1])

)〉
F

≤ ‖X [n+1] −X‖F δ2s‖(X [n+1] −X)(S[n+1])‖F .

After simplification, we have

‖(X [n+1] −X)(S[n+1])‖F ≤ δ2s‖X [n+1] −X‖F .

It follows that

‖X [n+1] −X‖2F
= ‖(X [n+1] −X)

(S[n+1])
‖2F + ‖(X [n+1] −X)(S[n+1])‖2F

≤ ‖(X [n+1] −X)
(S[n+1])

‖2F + δ2
2s‖X [n+1] −X‖2F .

After a rearrangement, we obtain

‖X [n+1] −X‖2F ≤
1

1− δ2
2s

‖(X [n+1] −X)
(S[n+1])

‖2F . (7)

The second step of the argument is as a consequence of (HTP1).
It starts by noticing that

‖(X [n] +A>(Y −AX [n]))(S)‖2F
≤ ‖(X [n] +A>(Y −AX [n]))(S[n+1])‖2F .

Eliminating the contribution on S ∩ S[n+1], we derive

‖(X [n] +A>(Y −AX [n]))(S\S[n+1])‖F
≤ ‖(X [n] +A>(Y −AX [n]))(S[n+1]\S)‖F .

For the right-hand side, we have

‖(X [n] +A>(Y −AX [n]))(S[n+1]\S)‖F
= ‖
(
(I −A>A)(X [n] −X)

)
(S[n+1]\S)

‖F .

As for the left-hand side, we have

‖(X [n] +A>(Y −AX [n]))(S\S[n+1])‖F
=‖(X−X [n+1])

(S[n+1])
+
(
(I−A>A)(X [n]−X)

)
(S\S[n+1])

‖F

≥‖(X−X [n+1])
(S[n+1])

‖F−‖
(
(I−A>A)(X [n]−X)

)
(S\S[n+1])

‖F .

It follows that

‖(X−X [n+1])
(S[n+1])

‖F

≤ ‖
(
(I −A>A)(X [n]−X)

)
(S\S[n+1])

‖F

+ ‖
(
(I −A>A)(X [n]−X)

)
(S[n+1]\S)

‖F

≤
√

2 ‖
(
(I −A>A)(X [n]−X)

)
(S∆S[n+1])

‖F .

Thus, with U [n] := S ∪ S[n] ∪ S[n+1], we obtain

‖(X−X [n+1])
(S[n+1])

‖F ≤
√

2 ‖(I−A>U [n]AU [n])(X [n]−X)‖F

≤
√

2 δ3s‖X [n]−X‖F . (8)

As a final step, we put (7) and (8) together to obtain

‖X [n+1] −X‖F ≤ ρ ‖X [n] −X‖F , ρ :=

√
2δ2

3s

1− δ2
2s

.

The estimate (5) immediately follows. The coefficient ρ is less
than one as soon as 2δ2

3s < 1−δ2
2s. Since δ2s ≤ δ3s, this occurs

as soon as δ3s < 1/
√

3.
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