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Abstract

This article is concerned with the approximation and expressive powers of deep neural net-
works. This is an active research area currently producing many interesting papers. The results
most commonly found in the literature prove that neural networks approximate functions with
classical smoothness to the same accuracy as classical linear methods of approximation, e.g.
approximation by polynomials or by piecewise polynomials on prescribed partitions. However,
approximation by neural networks depending on n parameters is a form of nonlinear approx-
imation and as such should be compared with other nonlinear methods such as variable knot
splines or n-term approximation from dictionaries.

The performance of neural networks in targeted applications such as machine learning indi-
cate that they actually possess even greater approximation power than these traditional methods
of nonlinear approximation. The main results of this article prove that this is indeed the case.
This is done by exhibiting large classes of functions which can be efficiently captured by neural
networks where classical nonlinear methods fall short of the task.

The present article purposefully limits itself to studying the approximation of univariate
functions by ReLU networks. Many generalizations to functions of several variables and other
activation functions can be envisioned. However, even in this simplest of settings considered
here, a theory that completely quantifies the approximation power of neural networks is still
lacking.
AMS subject classification: 41A25, 41A30, 41A46, 68T99, 82C32, 92B20
Key Words: neural networks, rectified linear unit (ReLU), expressiveness, approximation
power

1 Introduction

Neural networks produce structured parametric families of functions that have been studied and
used for almost 70 years, going back to the work of Hebb in the late 1940’s [15] and of Rosenblatt in
the 1950’s [25]. In the last several years, however, their popularity has surged as they have achieved
state-of-the-art performance in a striking variety of machine learning problems, from computer
vision [19] (e.g. self-driving cars) to natural language processing [34] (e.g. Google Translate) and
to reinforcement learning (e.g. superhuman performance at Go [30, 31]). Despite these empirical
successes, even their proponents agree that neural networks are not yet well-understood and that a
rigorous theory of how and why they work could lead to significant practical improvements [3, 20].

1This research was supported by the NSF grants DMS 18-17603 (RD-GP), DMS 16-22134 (SF), DMS 16-64803
(SF), ONR grants N00014-17-1-2908 (RD), N00014-16-1-2706 (RD), N00014-20-1-2787(RD, SF, BH, GP), and the
Simons Foundation Math + X Investigator Award 400837 (ID).
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An often cited theoretical feature of neural networks is that they produce universal function ap-
proximators [5, 16] in the sense that, given any continuous target function f on a compact domain
and a target accuracy ε > 0, neural networks with enough judiciously chosen parameters give an
approximation to f within an error of size ε. Their universal approximation capacity has been
known since the 1980’s, yet it is not the main reason why neural networks are so effective in prac-
tice. Indeed, many other families of functions are universal function approximators. For example,
one can approximate a fixed univariate real-valued continuous target function f : [0, 1] → R using
Fourier expansions, wavelets, orthogonal polynomials, etc. [10]. All of these approximation meth-
ods are universal. Not only that, but in these more traditional settings, through the core results
of Approximation Theory [10, 7], we have a complete understanding of the properties of the target
function f which determine how well it can be approximated given a budget for the number of
parameters to be used. Such characterizations do not exist for neural network approximation, even
in the simplest setting when the target function is univariate and the network’s activation function
is the Rectified Linear Unit (ReLU).

The neural networks used in modern machine learning are distinguished from those popular in the
1980’s/90’s by an emphasis on using deep networks (as opposed to shallow networks with one hidden
layer). If the universal approximation property were key to the impressive recent successes of neural
networks, then the depth of the network would not matter since both shallow and deep networks
are universal function approximators.

The present article focuses on the advantages of deep versus shallow architectures in neural net-
works. Our goal is to put mathematical rigor into the empirical observation that deep networks can
approximate many interesting functions more efficiently, per parameter, than shallow networks (see
[13, 33, 36, 37, 12, 26] for a selection of rigorous results).

In recent years, there has been a number of interesting papers that address the approximation
properties of deep neural networks. Most of them treat ReLU networks since the rectified linear
unit is the activation function of preference in many applications, particularly for problems in
computer vision. Let us mention, as a short list, some papers most related to our work. It is
shown in [11] that deep ReLU networks can approximate functions of d variables as well as linear
approximation by algebraic polynomials with a comparable number of parameters. This is done
by using the fact (proved by Yarotsky [36]) that power functions xν can be approximated with
exponential efficiency by deep ReLU networks. Yarotsky also showed that certain classes of classical
smoothness (Lipschitz spaces) can be approximated with rates slightly better than that of classical
linear methods (see [37]). The main advantage of deep neural networks is that they can output
compositions of functions cheaply. This fact has been exploited by many authors (see e.g. [24],
where this approach is formalized, and [2] where this property is used to compare deep network
approximation with nonlinear shearlet approximation).

In the present paper, we address the approximation power of ReLU networks and, in particular,
whether such networks are truly more powerful in approximation efficiency than the classical meth-
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ods of approximation. Although most of our results generalize to the approximation of multivariate
functions, we discuss only the univariate setting since this gives us the best chance for definitive
results. Our main focus is on the advantages of depth, i.e., what advantages are present in deep
networks that do not appear in shallow networks. We restrict ourselves to ReLU networks since
they have the simplest structure and should be easiest to understand.

We emphasize that, when discussing approximation efficiency, we assume that f is fully accessible
and we ask how well f can be approximated by a neural network with n parameters. This is in
contrast to problems of data fitting where, instead of full access to f , we only have some data
observations about it. In the latter case, the approximation can only use the given data and its
performance would depend on the amount and form of that data. Performance in data fitting is
often formulated in a stochastic setting in which it is assumed that the data is randomly gener-
ated and both the observations and the gradient descent parameter updates are noisy. The data
fitting problem, using a specific form of approximation like neural networks, has two components,
commonly referred to as bias and variance. We are concentrating on the bias component. It plays
a fundamental role not only in data fitting but also in any numerical procedures based on neural
network approximation.

Given two integers W ≥ 2 and L ≥ 1, we let (precise definitions are given in the next section)

ΥW,L := {S : R→ R, S is produced by a ReLU network of width W and depth L}, (1)

and denote by n(W,L) the number of its parameters. We fix W and study the approximation
families ΥW,L when the number of layers L is allowed to vary. Our interest is in understanding why
taking L large, i.e., why using deep networks is beneficial. One way to investigate the approximation
power of ΥW,L is to first compare it to known nonlinear approximation families with essentially the
same number of degrees of freedom. Since every element in ΥW,L is a Continuous Piecewise Linear
(CPwL) function, the classical approximation family closest to ΥW,L is the nonlinear set

Σn := {S : R→ R, S is a CPwL function with at most n distinct breakpoints in (0, 1)}.

The elements of Σn are also called free knot linear splines. We place the restriction that the
breakpoints are in (0, 1) because we are concerned with approximation on the interval [0, 1].

When n � n(W,L), the sets Σn and ΥW,L have comparable complexity in terms of parameters
needed to describe them, since the elements in Σn are determined by 2n+ 2 parameters. This com-
parison also probes the expressive power2 of depth for ReLU networks because ΣW is (essentially)
the same as the one-layer ReLU network ΥW,1, see (4).

Several interesting results [6, 22, 33] show that, for arbitrarily large k ≥ 1 and n = n(W,L)

sufficiently large,
ΥW,L \ Σnk 6= ∅, (2)

2By expressivity of a neural network, we mean the collection of functions the network outputs.

3



cf e.g. [33, Theorem 1.2]. This means that sufficiently deep ReLU networks with n parameters can
compute certain CPwL functions whose number of breakpoints exceeds any power of n (the increase
of the network depth is necessary as k grows). The reason for (2) is that composing two CPwL
functions can multiply the number of breakpoints, allowing networks with L layers of width W to
create roughly WL breakpoints for very special choices of weights and biases, see [33]. By choosing
to use the available n parameters in a deep rather than shallow network, one can thus produce
functions with many more breakpoints than parameters, albeit these functions have a very special
structure.

The first natural question to answer in comparing Σn with ΥW,L is whether, for every fixed W ≥ 2,
each function S ∈ Σn is in a corresponding set ΥW,L with n(W,L) � n, i.e., with a comparable
number of parameters. This would guarantee we do not lose anything in terms of expressive power
when considering deep networks with fixed width W over shallow networks with fixed depth L.
One of our results, Theorem 3.1, gives a resolution to this question and shows that, up to a con-
stant multiplicative factor, fixed-width ReLU networks depending on n parameters are at least as
expressive as the free knot linear splines Σn. In other words, deep ReLU networks retain all of the
approximation power of free knot linear splines but also add something since they can create func-
tions which are far from being in Σn. We want to understand the new functions being created and
how they can assist us in approximation and thus in data fitting. In this direction, we showcase in
§5 and §6 two classes of functions easily produced by ReLU networks, one consisting of self-similar
functions and the other emulating trigonometric functions. Appending these classes to Σn naturally
provides a powerful dictionary for nonlinear approximation. Similar observation was announced in
[12], where the authors noticed that highly oscillatory textures and the Weierstrass function can be
exponentially well approximated by sparse ReLU networks.

What types of results could effectively explain the increased approximation power of deep networks
as compared with other forms of approximation? One possibility is to exhibit classes K of functions
on which the decay rate of approximation error for neural networks is better than for other methods
(linear or nonlinear) while depending on the same number of parameters. On this point, let us
mention that by now there are several theorems in the literature, see e.g. [2, 4, 23, 28], which show
that neural networks perform as well as certain classical methods such as polynomials, wavelets,
shearlets, etc. (but they do not show that neural networks perform any better than these methods),
or optimally represent certain function classes in terms of Kolmogorov rate-distortion theory, see
[2, 12].

We seek more convincing results providing compact classes K that are subsets of Banach spaces X
on which neural networks perform significantly better than other methods of approximation. In this
direction, we mention at the outset that such sets K cannot be described by classical smoothness
(such as Lipschitz, Sobolev, or Besov regularity) because for classical smoothness classes K, there
are known lower bounds on the performance for any methods of approximation (linear or nonlinear).
These lower bounds are provided by concepts such as entropy and widths. However, let us point
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out that there is an interesting little twist here that allows deep neural networks to give a slight
improvement over classical approximation methods for certain Lipschitz, Sobolev, and Besov classes
(see Theorems 7.3 and 7.4). This improvement is possible when the selection of parameters used in
the approximation is allowed to be unstable.

Our results on the expressive power of depth describe certain classes of functions that can be
approximated significantly better by ΥW,L than by Σn when n(W,L) is comparable to n, see §7.3.
The construction of these new classes of functions exploits the fact that, when S and T are functions
in Σn, their composition S ◦ T , can be produced by fixed-width ReLU networks depending on a
number of parameters comparable to n. This composition property allows one to construct broad
classes of functions, based on self similarity, whose approximation error decays exponentially using
deep networks but only polynomially using Σn (due to the utter failure of this composition property
for Σn).

2 Preliminaries and notation

To set some notation, recall the definition of the ReLU function applied to x = (x1, . . . , xd) ∈ Rd:

ReLU(x1, . . . , xd) = (ReLU(x1), . . . ,ReLU(xd)) = (max {0, x1} , . . . ,max {0, xd}).

Definition 2.1. A fully connected feed-forward ReLU network N with width W and depth L is
a collection of weight matrices M (0), . . . , M (L) and bias vectors b(0), . . . , b(L). The matrices M (`),
` = 1, . . . , L− 1, are of size W ×W , whereas M (0) has size W × 1, and M (L) has size 1×W . The
biases b(`) are vectors of size W if ` = 0, . . . , L − 1, and a scalar if ` = L. Each such network N
produces a univariate real-valued function

A(L) ◦ ReLU ◦A(L−1) ◦ · · · ◦ ReLU ◦A(0)(x), x ∈ R,

where
A(`)(y) = M (`)y + b(`), ` = 0, . . . , L.

We define ΥW,L as the set of such functions resulting from all possible choices of weights and biases.

Every S ∈ ΥW,L is a CPwL function on the whole real line. For each input x := x(0) ∈ R, the
value S(x(0)) of any S ∈ ΥW,L is computed after the calculation of a series of intermediate vectors
x(`) ∈ RW , called vectors of activation at layer `, ` = 1, . . . , L, before finally producing the output
x(L+1) = M (L)x(L) + b(L). The computations performed by such a network to produce an S ∈ ΥW,L

are shown schematically in Figure 1.

For example, the hat function (also called triangle function) H : [0, 1]→ R, defined as

H(x) = 2(x−0)+−4
(
x−1

2

)
+

=
[
2 −4

]
ReLU

{[
1

1

]
x+

[
0

−1
2

]}
=





2x, 0 ≤ x ≤ 1
2 ,

2(1− x), 1
2 < x ≤ 1,

(3)
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Figure 1: The computation graph associated to a neural network with input/output dimension 1,
width W = 3 and L hidden layers. The edges between layers `− 1 and ` are labeled by the entries
of the weight matrix M (`−1). The jth node (called a neuron) at layer ` computes the jth component
of x(`) by taking the dot product of the jth row of M (`−1) with the entries of x(`−1) and adding it
to the jth entry of the vector b(`−1) of biases.

Computational Graph

1
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1
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- 12

input x
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Usual Graph

0 1
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Figure 2: The computation graph and usual graph associated to H.

belongs to Υ2,1, see Figure 2.

For L = 1, each function in ΥW,1 is a CPwL function with at most W breakpoints determined
by the nodes in the first layer. Conversely, any CPwL function with (W − 1) breakpoints interior
to [0, 1], when considered on the interval [0, 1], is the restriction of a function from ΥW,1 to that
interval. Indeed, the elements S ∈ ΣW−1 on [0, 1] can be represented as

ax+ b+
W−1∑

j=1

mj(x− ξj)+ =
[
a m1 . . . mW−1

]
ReLU








1

1

. . .

1


x+




0

−ξ1

. . .

−ξW−1








+ b,

where ξ1, . . . , ξW−1 are the interior breakpoints. In other words, as functions on [0, 1], we have

ΣW−1 ⊂ ΥW,1 ⊂ ΣW , (4)

which means that, for large W , the sets ΥW,1 and ΣW are essentially the same. Therefore, neural
networks with one hidden layer have the same approximation power as CPwL functions with the
same number of parameters.
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The number of parameters used to generate functions in ΥW,L is

n(W,L) = W (W + 1)L− (W − 1)2 + 2. (5)

Not all counted parameters (the weights, i.e., entries of M (`), and biases, i.e., entries of b(`)) are
independent, since for instance some of the multipliers used in the transition x(L) → x(L+1) could
have been absorbed in the preceding layer. We write

n(W,L) �W 2L

to indicate that n(W,L) is comparable to W 2L, in the sense that there are constants c, C > 0 such
that c W 2L ≤ n(W,L) ≤ C W 2L — one could take c = 1/2 and C = 2 when W ≥ 2 and L ≥ 2.

3 ReLU networks are at least as expressive as free knot linear
splines

In this section, we fix W ≥ 4, L ≥ 2, and consider the set ΥW,L defined in (1). Our goal is to prove
that Σn ⊂ ΥW,L, where the number of its parameters n(W,L) ≤ Cn for a certain fixed constant C.
In order to formulate our exact result we define q := bW−2

6 c whenW ≥ 8 and q := 2 for 4 ≤W ≤ 7.

Theorem 3.1. Fix a width W ≥ 4. For every n ≥ 1, the set Σn of free knot linear splines with
n breakpoints is contained in the set ΥW,L of functions produced by width-W and depth-L ReLU
networks, where

L =





2
⌈

n
q(W−2)

⌉
, n ≥ q(W − 2),

2, n < q(W − 2),

n(W,L) ≤




Cn, n ≥ q(W − 2),

W 2 + 4W + 1, n < q(W − 2),

with C an absolute constant. Here q := bW−2
6 c if W ≥ 8 and q := 2 if 4 ≤W ≤ 7.

Before giving the proof of Theorem 3.1 in §3.2 below we first introduce in §3.1 some notation.

3.1 Special neural networks

Our main vehicle for proving Theorem 3.1 is the construction of a special neural network, whose
output Υ

W,L is subset of the output ΥW,L of a RELU network with width W and depth L3. Given
a width W ≥ 4 and a depth L ≥ 2, we focus on networks where a special role is reserved for two
nodes in each hidden layer, see Figure 3, which depicts these nodes as the first (“top”) and at the
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Figure 3: The computation graph associated to Υ
5,6.

last (“bottom”) node of each hidden layer, respectively. The top neuron (first node), which is ReLU

free, is used to simply copy the input x. The concatenation of all these top nodes can be viewed as a
special “channel” (a term borrowed from the electrical engineering filter-bank literature) that skips
computation altogether and just carries x forward. We call this the source channel (SC). The bottom
neuron (last node) in each layer, which is also ReLU free, is used to collect intermediate results.
We call the concatenation of all these bottom nodes the collation channel (CC). This channel never
feeds forward into subsequent calculations, it only accepts previous calculations. The rest of the
channels are computational channels (CmC). They consist of neurons (nodes), called computational
nodes, that are equipped with the ReLU function, applied to the input and bias of that node. The
fact that a special role is reserved for two channels enforces the natural restriction W ≥ 4, since we
need at least two computational channels. We call these networks (with SC and CC) special neural
networks, for which we introduce a special notation, featuring a top and a bottom horizontal line
to represent the SC and CC, respectively. Namely, we set

Υ
W,L

= {S : [0, 1]→ R, S is produced by a special network of width W and depth L}.

We feel that these more structured networks are not only useful in proving results on approximation
but may be useful in applications such as data fitting. In practice, the designation of the first row
as a SC and the last row as a CC amounts to having matrices M (`) and vectors b(`) of the form

M (0) =
[
1 m

(0)
2 . . . m

(0)
W−1 0

]>
, b(0) =

[
0 b

(0)
2 . . . b

(0)
W−1 0

]>
,

M `) =




1 0 . . . 0 0

m
(`)
2,1 m

(`)
2,2 . . . m

(`)
2,W−1 0

m
(`)
3,1 m

(`)
3,2 . . . m

(`)
3,W−1 0

. . . . . .

m
(`)
W−1,1 m

(`)
W−1,2 . . . m

(`)
W−1,W−1 0

m
(`)
W,1 m

(`)
W,2 . . . m

(`)
W,W−1 1




, b(`) =




0

b
(`)
2

b
(`)
3

. . .

b
(`)
W−1

b
(`)
W




, ` = 1, . . . , L− 1, (6)

3 Technically, the special networks differ from the usual ReLU networks because they contain ReLU-free neurons,
but the set of functions ΥW,L produced by them are always contained in the standard ReLU network output ΥW,L,
see Remark 3.1.
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and
M (L) =

[
m

(L)
1 . . . m

(L)
W−1 1

]
, b(L) ∈ R.

Remark 3.1. Note that since the SC and CC are ReLU-free, the width-W depth-L special networks
do not form a subset of the set of width-W depth-L ReLU networks. However, in terms of sets of
functions produced by these networks, the inclusion

Υ
W,L ⊂ ΥW,L (7)

is valid. Indeed, given S̄ ∈ Υ
W,L, determined by the set of matrices and vectors {M̄ (`), b̄(`)}, ` =

0, . . . , L, we will construct {M (`), b(`)}, ` = 0, . . . , L, such that S̄ is also the output of a ReLU

network with the latter matrices and vectors. First, notice that the input x ∈ [0, 1], and therefore we
have x = ReLU(x). Next, since the bottom neuron in the `-th layer, ` = 1, . . . , L, collects a function
S̄(`)(x) depending continuously on x ∈ [0, 1], there is a constant C` such that S̄(`)(x)+C` ≥ 0 for all
x ∈ [0, 1]. Hence S̄(`)(x) = ReLU(S̄(`)(x) +C`)−C`. Therefore, the ReLU network that produces S̄
has the same matrices M (`) = M̄ (`) and vectors b(`), ` = 1, . . . , L− 1, where

b
(`)
j = b̄

(`)
j , j = 1, . . . ,W − 1, b

(`)
W = b̄

(`)
W + C`,

and b(L) = b̄(L) −∑L−1
`=1 C`.

Proposition 3.2. Special neural networks produce sets of CPwL functions that satisfy the following
properties:
(i) For all W,L,Q,

Υ
W,L

+ Υ
W,Q ⊂ Υ

W,L+Q
. (8)

(ii) For L < P ,
Υ
W,L ⊂ Υ

W,P
.

Proof: To show (i), we first fix S ∈ Υ
W,L and T ∈ Υ

W,Q and use the following ‘concatenation’
of the special networks for S and T . The concatenated network has the same input and first L
hidden layers as the network that produced S. Its (L + 1)-st layer is the same as the first hidden
layer of the network that produced T except that in the collation channel it places S rather than
0. The remainder of the concatenated network is the same as the remaining layers of the network
producing T except that the collation channel is updated, see Figure 4. The proof of (ii) follows
the proof of (i) with Q = P − L and T ≡ 0. �

3.2 Proof of Theorem 3.1

In this section, we prove Theorem 3.1. Namely, we show that for any fixed width W ≥ 4, any
element T in Σn is the output of a special network with a number of parameters comparable to n.
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Figure 4: The computational graph for summation.

Our constructive proof begins with Lemma 3.3, in which we create a special network with only 2

layers that generates a particular collection of CPwL functions, see (9). To describe this collection,
we consider any positive integer N of the form N := q(W − 2), where q := b(W − 2)/6c. Since it is
meaningful to have only cases when q ≥ 1, we impose the restriction W ≥ 8. In the Appendix, we
treat the remaining cases when 4 ≤W < 8. Notice that N is small and so at this stage we are only
showing how to construct CPwL functions with a few breakpoints.

Let x1 < · · · < xN ∈ (0, 1) be any N given breakpoints in (0, 1) and choose x0 and xN+1 to be any
two additional points such that 0 ≤ x0 < x1 and 1 ≥ xN+1 > xN . The set of all CPwL functions
which vanish outside of [x0, xN+1] and have breakpoints only at the x0, x1, . . . , , xN , xN+1 is denoted
by

S := S(x0, . . . , xN+1) (9)

and is a linear space of dimension N . We create a basis for S the following way. We denote by ξj ,
j = 1, . . . , (W − 2), the points ξj := xjq, which we call principal breakpoints and to each principal
breakpoint ξj , we associate q basis functions Hi,j , i = 1, . . . , q. Here Hi,j , see Figure 5, is a hat
function supported on Ii,j := [xjq−i,, xjq+1] which takes the value 0 at the endpoints of this interval,
the value one at ξj and is linear on each of the two intervals [xjq−i,, xjq] and [xjq, xjq+1], that is

Hi,j(x) =





x−xjq−i

xjq−xjq−i
, if x ∈ (xjq−i, xjq),

0, if x /∈ Ii,j ,
x−xjq+1

xjq−xjq+1
, if x ∈ (xjq, xjq+1).

We rename these hat functions as φk, k = 1, . . . , N , and order them in such a way that φk has
leftmost breakpoint xk−1, that is φjq−i+1 = Hi,j , j = 1, . . . ,W − 2, i = 1, . . . , q. We say φk is
associated with ξj if ξj is the principal breakpoint where it is nonzero. We claim that these φk’s
are a basis for S. Indeed, since there are N of them, we need only check that they are linearly
independent. If

∑N
k=1 ckφk = 0, then c1 = 0 because φ1 is the only one of these functions which is

nonzero on [x0, x1]. We then move from left to right getting that each coefficient ck is zero.
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. . . x(j−1)q−2 x(j−1)q−1 x(j−1)q xjq−q+1 xjq−q+2 . . . xjq−i . . . xjq−1 xjq xjq+1 . . .
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=
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H2,j−1 H1,j−1 Hq,j Hi,j H1,j

Figure 5: The graphs of Hi,j .

Lemma 3.3. For any N breakpoints x1 < · · · < xN ∈ (0, 1), N := q(W − 2), q := b(W − 2)/6c,
W ≥ 8, S(x0, . . . , xN+1) ⊂ Υ

W,2.

Proof: Consider T ∈ S(x0, . . . , xN+1), T =
∑N

k=1 ckφk, and determine its principal breakpoints
ξ1, . . . , ξW−2 (every q-th point from the sequence (x1, x2, . . . , xN ) is a principal breakpoint). We
next represent the set of indices Λ = {1, . . . , N} as a disjoint union of K ≤ 6q ≤W − 2 sets Λi,

Λ = ∪Ki=1Λi,

where the Λi’s have the following two properties:

• for any Λ′ ∈ {Λ1, . . . ,ΛK}, all of the coefficients ck with k ∈ Λ′ of T have the same sign.

• if k, k′ ∈ Λ′, then the principal breakpoints ξj and ξj′ associated to φk, φk′ respectively, satisfy
the separation property |j − j′| ≥ 3.

We can find such a partition as follows. First, we divide Λ = Λ+ ∪ Λ− where for each i ∈ Λ+, we
have ci ≥ 0 and for each i ∈ Λ−, we have ci < 0. We then divide each of Λ+ and Λ− into at most
3q sets having the desired separation property. If K < W − 2, we set ΛK+1 = · · · = ΛW−2 = ∅. It
may also happen that some of the Λk’s, k ≤ K, are empty. In all cases for which Λk = ∅, we set
Tk = 0, and write

T =

W−2∑

k=1

Tk, Tk :=
∑

i∈Λk

ciφi, k = 1, . . . ,W − 2. (10)

Notice that the φi, i ∈ Λk 6= ∅, have disjoint supports and so ci = Tk(ξj) where ξj is the principal
breakpoint associated to φi.
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We next show that each of the Tk corresponding to a nonempty Λk is of the form ±[Sk(x)]+ for
some linear combination Sk of 1, x, (x − ξ1)+, . . . , (x − ξW−2)+. Fix k and first consider the case
where all of the ci in Λk are nonnegative. We consider the CPwL function Sk which takes the value
ci at each principal breakpoint ξj associated to an i ∈ Λk. At the remaining principal breakpoints,
we assign negative values to the Sk(ξj)’s. We choose these negative values so that for any i ∈ Λk, Sk
vanishes at the leftmost and rightmost breakpoints of all φi with i ∈ Λk. This is possible because
of the separation property. It follows that [Sk(x)]+ = Tk(x). A similar construction applies when
all the coefficients in Λk are negative. In this case, Tk = −[Sk]+ for the constructed Sk. We have
suggested a particular strategy for defining the Λk’s in Appendix 9.1. A typical Tk, resulting from
this strategy, which for the sake of simplicity we call T̃ , is pictured in Figure 6.

x0 xq−i xq xq+1 ξ2 ξ3 x4q−i x4q x4q+1 ξ5 ξ6 x7q−i x7q x7q+1 x8q

=

0

=

ξ1

=

ξ4

=

ξ7

S̃

T̃ = [S̃]+

Figure 6: A typical T̃ computed by a node in the second layer of Υ
W,2.

We can now describe the ReLU network that generates T . Since it is special, we focus only the
computational channels. The computational nodes in the first layer are (x− ξj)+, j = 1, . . . ,W −2,
where the ξj ’s are the principal breakpoints. The computational nodes in the second layer are equal
to the [Sk]+ or 0. Because of (10), the target T is the output of this network with output layer
weights ±1 or 0. �

Remark 3.2. If we want to generate all spaces S(x0, . . . , xN0+1) with N0 < N as outputs of a
special network, we can artificially add (N − N0) distinct points in the interval (xN0 , xN0+1) and
view the elements in S(x0, . . . , xN0+1) as CPwL with N breakpoints vanishing outside [x0, xN0+1],
even though the last N −N0 + 1 points are not really breakpoints, except possibly xN0+1.

Our next lemma shows how to carve up the target function T ∈ Σn with a (possibly) large number
of breakpoints into “bitesize” pieces that are handled by Lemma 3.3.

Lemma 3.4. If T ∈ ΣN is any CPwL function on [0, 1] with N = q(W −2)L, q := bW−2
6 c, W ≥ 8,

then T is the output of a special network Υ
W,2L with at most 2L layers.

Proof: Let x1 < · · · < xN be the breakpoints of T in (0, 1) and set x0 := 0, xN+1 := 1. We define
`(x) := ax+b to be the linear function which interpolates T at the endpoints 0, 1 and set S := T−`.
We can write S = S0 + · · ·+SL−1, where Sj ∈ ΣN is the CPwL function which agrees with S at the
points xi, for all indices i ∈ {jq(W −2)+1, . . . , (j+1)q(W −2)} and is zero at all other breakpoints
of T , see Figure 7.
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x0 x1 xq(W−2)xq(W−2)+1 xN+1

. . .

. . .

=

0

=

1

S0

S1

SL SL−1

Figure 7: The graphs of the functions Sj , j = 0, . . . , L− 1, from Lemma 3.4
.

Clearly, see (9),
Sj ∈ S(xjq(W−2), . . . , x(j+1)q(W−2)+1), j = 0, . . . , L− 1,

and therefore, it follows from Lemma 3.3 that each Sj ∈ Υ
W,2
j . We concatenate the L networks that

produce Sj ∈ Υ
W,2
j , j = 0, . . . , L − 1, as described in Proposition 3.2 and thereby produce S. In

order to account for the linear term `(x), we assign weight a and bias b to the output of the node
of the source channel in the last layer of the concatenated network, see Figure 8. �

. . .
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

input x

output

source
channel

collation
channel

1

1

1

1

1

1

1

1

1

1

1

1

±1

±1

±1

±1

±1

±1

±1

±1

±1
0 a

. . .

. . .

. . .

. . .

S0 S1 SL−1

S0(x) S0(x) + S1(x) S0(x) + S1(x) + · · ·+ SL−1(x) + ax+ b

Figure 8: The resulting network with 2L layers.

Proof of Theorem 3.1: Now we are ready to complete the proof of Theorem 3.1.

Case 1: We first consider the case when W ≥ 8. Let N1 := q(W − 2), where q := bW−2
6 c. Given

n, if n ≥ N1, we choose L minimal such that N := q(W − 2)L ≥ n, that is

L = L(n,W ) :=

⌈
n

q(W − 2)

⌉
.

Lemma 3.4 and inclusion (7) show that ΣN ⊂ ΥW,2L and therefore Σn ⊂ ΣN ⊂ ΥW,2L. On the
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other hand, L < n
q(W−2) + 1. Using (5), we have that the number of parameters in ΥW,2L is

n(W, 2L) < 2W (W + 1)

(
n

q(W − 2)
+ 1

)
− (W − 1)2 + 2 =

2W (W + 1)

q(W − 2)
n+W 2 + 4W + 1.

Optimizing overW shows that the maximum of 2W (W+1)
q(W−2) over integersW ≥ 8 is achieved atW = 13

and q = 1, giving the value 364
11 < 34. Hence,

n(W, 2L) < 34n+W 2 + 4W + 1 < 34n+ 27q(W − 2) ≤ 61n,

where we used that W/13 ≤ q and q(W − 2) = N1 ≤ n.

On the other hand if n < N1 := q(W −2), then Lemma 3.4 and inclusion (7) show that Σn ⊂ ΣN1 ⊂
ΥW,2. Then, we have

n(W, 2) = W 2 + 4W + 1,

as desired.

Case 2: The proof of the case 4 ≤W ≤ 7 is given in Appendix 9.2. �

Remark 3.3. A careful look at the proof of Theorem 3.1 gives in fact that

Σn ⊂ Υ
W,L

rather than the inclusion Σn ⊂ ΥW,L, with the same values of L and bounds on the number of
parameters as described in Theorem 3.1.

Remark 3.4. We have not tried to optimize constants in the above theorem. If one counts the
actual number of parameters used in ΥW,L (rather than the parameters available), one obtains a
much better constant. We know, in fact, that we can present other constructions (different than
those given here) which provide a better constant in the statement of Theorem 3.1.

4 More about standard and special networks

In this section, we discuss further properties of the sets ΥW,L and Υ
W,L. We highlight in particular

Theorem 4.1, which is a generalization of Theorem 3.1, and whose proof is deferred to Appendix 9.3.
Note that the conclusion of Theorem 3.1 depends on the ranges of the width W and the parameter
n in Σn. To avoid excessive notation, we concentrate on only one of these ranges in the theorem
below.

Theorem 4.1. The following statement holds for compositions and sums of compositions of free
knot linear splines:

(i) For functions S1 ∈ Σn1 , . . . , Sk ∈ Σnk
with ni ≥ (W − 2)bW−2

6 c, and W ≥ 8, the composition

Sk ◦ · · · ◦ S1 ∈ ΥW,L, L = 2

k∑

j=1

⌈
nj

bW−2
6 c(W − 2)

⌉
, (11)
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where the number of parameters describing ΥW,L satisfies the bound

n(W,L) ≤ 34

k∑

j=1

nj + 2k(W 2 +W ).

(ii) For nonconstant functions Si,j ∈ Σni,j , i = 1, . . . ,m, j = 1, . . . , `i, with ni,j ≥ (W − 4)bW−4
6 c,

and W ≥ 10, the sum of compositions satisfies
m∑

i=1

aiSi,`i ◦ · · · ◦ Si,1 ∈ Υ
W,L ⊂ ΥW,L, (12)

where the number of parameters describing ΥW,L satisfies the inequality

n(W,L) ≤ 44
m∑

i=1

`i∑

j=1

ni,j + 2W (W + 1)
m∑

i=1

`i.

Theorem 4.1 relies on some properties of standard and special networks. We state and prove below
the ones that are explicitly needed in the remainder of the paper, starting with the following results.

Proposition 4.2. Let W ≥ 2. For any Y1 ∈ ΥW,L1 , . . . ,Yk ∈ ΥW,Lk ,

(i) the composition of the Yi satisfies

Yk ◦ · · · ◦ Y1 ∈ ΥW,L, L = L1 + · · ·+ Lk; (13)

(ii) the sum of the Yi satisfies

Y1 + · · ·+ Yk ∈ Υ
W+2,L

, L = L1 + · · ·+ Lk; (14)

(iii) the sum of the (Yi)+ := ReLU ◦ Yi satisfies

(Y1)+ + · · ·+ (Yk)+ ∈ Υ
W+2,L

, L = k + L1 + · · ·+ Lk. (15)

Proof: The argument is constructive. First, to prove (13), let Nj be the ReLU network with
width W and depth Lj producing Yj . We concatenate the networks N1, · · · ,Nk as shown in
Figure 9 for the case of Y2 ◦ Y1. The concatenated network has the same input and first L1 hidden
layers as the network N1. Its (L1 + 1)-st layer is the same as the first hidden layer of the network
N2. The weights between the L1-st and (L1 + 1)-st layer are the output weights of Y1, multiplied
by the input weights for the first hidden layer of Y2. The remainder of the concatenated network is
the same as the remaining layers of N2. Clearly, the resulting network will have n = L1 + · · ·+ Lk

hidden layers.

To show (14), we concatenate the networks N1, . . . ,Nk as shown in Figure 4 by adding a source
channel and a collation channel. The resulting network is a special network with width W + 2 and
depth L1 + · · ·+ Lk.
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input x

output

Y2 ◦ Y1(x)
. . .

. . .

. . .

. . .

Y1 Y2

. . .

. . .

. . .

. . .

Figure 9: The network computing Y2 ◦ Y1.
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1 1

. . .1 1
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. . .
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1 1
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. . .

. . .

. . .

. . .

1 1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

. . . . . .

N1 N2 Nk

Y1(x)
k−1∑
i=1

Yi(x)
k∑

i=1

Yi(x)

W
id
th
W

Figure 10: The computational graph of the special network producing
∑k

j=1 Yj .

Finally, for (15), we concatenate the networks N1, . . . ,Nk by adding an extra layer after each Nj
to perform the ReLU operation on its output, see Figure 4. The rest of the construction is similar
to the one for (14). �

The following two results will also be needed later. We use the notation g◦k, k ≥ 2, to denote the
function which results when g is composed with itself k − 1times.

Proposition 4.3. If T ∈ Υw,L, 2 ≤ w ≤ W , then S =
∑m

i=1 aiT
◦i can be produced by a special

network with width W + 2 and depth Lm, that is S ∈ Υ
W+2,Lm.

Proof: First, note that we have the inclusion Υw,L ⊂ ΥW,L for every 2 ≤ w ≤ W . We can always
assign zero weights and biases to any selected nodes of the network producing ΥW,L, and therefore
we can always assume that T ∈ ΥW,L. We adjust the network generating T ◦m encountered in the
proof of (13). We augment it to a special network in such a way that, after the computation of each
of the T ◦i, we place aiT ◦i(x) into the collation channel, see Figure 12. The source channel is not
needed in this case, but we include it nonetheless since it will be used when creating the sum of S
with another function. �

Proposition 4.4. If T ∈ ΥW1,`, g ∈ ΥW2,`, and W1 + W2 = W , then Sg =
∑m

i=1 aig ◦ T ◦i can be
produced by a special network with width W + 2 and depth `(m+ 1), i.e., Sg ∈ Υ

W+2,`(m+1).

16



L1 layers

input

output

. . .

. . .

. . .0

. . .1 1 1

. . .

. . .

. . .

. . .

. . .

1 1 1

. . .1 1 1

. . .

. . .

. . .

. . .

. . .

1 1 1

. . .1 1 1

. . .

. . .

. . .

. . .

. . .

1 1 1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

. . . . . .

N1 N2 Nk

(Y1)+(x) (Y1)+(x) + (Y2)+(x) (Y1)+(x) + · · ·+ (Yk)+(x)

W
id
th
W

Figure 11: The computational graph of the special network producing
∑k

j=1(Yj)+.
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T T T

a1T (x) a1T (x) + a2T
◦2(x)

m∑
i=1

aiT
◦i(x)

Figure 12: The computational graph of the special network producing S.

Proof: As before, we use the network of width W1 generating T ◦m. For the other W2 channels,
we use m copies of the network G producing g and combine them as shown in Figure 13. After the
computation of each of the T ◦i, we place T ◦i(x) as an input in the i-th copy of G and put ai times
its output into the collation channel. Again, the source channel is not needed here but can be used
at a later time. �

5 ReLU networks efficiently produce functions with self similarity

Having established that ReLU networks can output sums and compositions of CPwL functions, we
show that they also can output CPwL functions with certain self-similar patterns. We formalize
this structure below.

Let 0 < ξ1 < ξ2 < · · · < ξk < 1 be a fixed set of breakpoints and let S be any element of
S(ξ) := S(0, ξ1, . . . , ξk, 1). In particular, S vanishes outside of [0, 1]. We think of S as a pattern. It
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Figure 13: The computational graph of the special network producing Sg.

is easy and cheap for ReLU networks to replicate this pattern on many intervals. To describe this,
let {J1, . . . , Jm} denote a collection of m intervals contained in [0, 1] whose interiors are pairwise
disjoint. We order these intervals from left to right. We say that a CPwL function F is self similar
with pattern S ∈ S(ξ) if

F (x) =
m∑

i=1

S(hi(x− ai)), x ∈ [0, 1], (16)

where Ji = [ai, bi] and hi = |Ji|−1, i = 1, . . . ,m. Thus, the function F consists of a dilated version
of S on each of the m intervals Ji. It has roughly km breakpoints but is only described by 2(k+m)

parameters. We show below that, in order to produce such a function F , ReLU networks only need
a number of parameters of the order k +m, and not km as would be naively inferred by regarding
F as an element of Σkm.

Theorem 5.1. Let W ≥ 8. Any self-similar function F of the form (16) with S ∈ S(ξ) ⊂ Σk

belongs to Υ
W,L, for a suitable value of L that satisfies n(W,L) ≤ C1(k + m) + C2W

2 for some
absolute constants C1, C2 > 0.

Proof: We start with the case when S is nonnegative and the intervals Ji = [ai, bi] (not just their
interiors) are disjoint. For each i = 1, . . . ,m, we introduce a point ci in the interval (bi, ai+1), where
am+1 := 1. We consider the hat function Hi which is zero outside [ai, ci], equal to one at bi, and
linear on [ai, bi] and [bi, ci], as well as the hat function Ĥi which is zero outside [bi, ai+1], equal to
one at ci, and linear on [bi, ci] and [ci, ai+1]. In the case when bm = 1, we cannot construct Hm and
Ĥm as above, and instead set Hm(x) = 1

1−am (x − am)+ and Ĥm(x) = 0. With Ŝ(x) := S(1 − x),
we claim that

F =
(
S ◦ T − Ŝ ◦ T̂

)
+
, where T :=

m∑

i=1

Hi, T̂ :=

m∑

i=1

Ĥi.
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This can be easily verified by separating into the three cases x ∈ [ai, bi], x ∈ [bi, ci], and x ∈ [ci, ai+1].
According to Theorem 3.1, we have S, Ŝ ∈ ΥW−4,L′ with either W 2L′ � n(W − 4, L′) ≤ C ′k or
L′ = 2, and T, T̂ ∈ ΥW−4,L′′ with either W 2L′′ � n(W − 4, L′′) ≤ C ′′m or L′′ = 2. Then, by
Proposition 4.2, we obtain that both S ◦T, Ŝ ◦ T̂ ∈ ΥW−4,L′+L′′ , that their difference S ◦T − Ŝ ◦ T̂ ∈
Υ
W−2,2(L′+L′′) ⊂ ΥW−2,2(L′+L′′). At last, the function F =

(
S ◦ T − Ŝ ◦ T̂

)
+
∈ Υ

W,L′′′ , where
L′′′ = 1 + 2(L′ + L′′), and therefore n(W,L′′′) �W 2L′′′ ≤ c1(k +m) + c2W

2.

Now, in the case of a general pattern S with k breakpoints, we write S = S+−S−, where S+, S− are
nonnegative, vanish outside [0, 1], and have k′ ≤ 2k breakpoints. We also decompose each sum (16)
corresponding to S+ and S− into a sum over odd indices and a sum over even indices to guarantee
disjointness of the underlying intervals. In this way, F is represented as a sum of the ReLU of four
functions of the form (Si ◦ Ti − Ŝi ◦ T̂i) each of them belonging to Υ

W−2,2(L′+L′′) and according to
Proposition 4.2, it follows that F ∈ Υ

W,L, where L = 4 + 8(L′ + L′′). Finally, a parameter count
gives

n(W,L) �W 2L = 4W 2 + 8W 2(L′ + L′′) ≤ C1(k +m) + C2W
2,

where C1 and C2 are absolute constants and concludes the proof. �

Remark 5.1. The above argument also works if the condition S ∈ S(ξ) ⊂ Σk is replaced by
S ∈ ΥW−4,L, where S(0) = S(1) and n(W − 4, L) ≤ Ck, with C being an absolute constant.

6 ReLU networks are at least as expressive as Fourier-like sums

In this section, we show that ReLU networks can efficiently produce linear combinations of functions
from a certain Riesz basis that emulates the trigonometric basis. The main point to emphasize here
is that the linear combinations we consider can involve any of these basis functions not just the first
consecutive ones. Such a linear combination consisting of n basis functions is commonly referred to
as an n term approximation from a dictionary (a basis in our case). Approximation by such sums
is a classic example of nonlinear approximation.

To describe the Riesz basis we have in mind, we consider the functions C,S : [0, 1]→ R, given by

C(x) :=

{
1− 4x, x ∈ [0, 1/2),

4x− 3, x ∈ [1/2, 1],
S(x) :=





4x, x ∈ [0, 1/4),

2− 4x, x ∈ [1/4, 3/4),

4x− 4, x ∈ [3/4, 1].

Next, for each k ≥ 1, we introduce Ck,Sk : [0, 1]→ R, defined for any x ∈ [0, 1] by

Ck(x) := C(kx− bkxc), Sk(x) := S(kx− bkxc).

Examples of representatives of this family of functions are depicted in Figure 14. The system
F := (Ck,Sk)k≥1 is an important example of a family of CPwL functions, since it forms a Riesz
basis for L0

2[0, 1], the set of square integrable functions on [0, 1] with zero mean. Namely, the
following statement holds.
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Figure 14: The graphs of C, S, C3, and S3.

Proposition 6.1. The system (Ck,Sk)k≥1 is a Riesz basis for L0
2[0, 1], that is it spans L0

2[0, 1] and
there are absolute constants c, C > 0 such that, for any two sequences a, b ∈ `2(N) of real numbers,
we have

c
∑

k≥1

(a2
k + b2k) ≤

∥∥∥∥
∑

k≥1

(akCk + bkSk)
∥∥∥∥

2

L2[0,1]

≤ C
∑

k≥1

(a2
k + b2k). (17)

Proof: The proof of this statement is deferred to Appendix 9.4. �

The following theorem shows how we can produce via ReLU networks 2k-term linear combinations
of elements from F with a good control on the depth L.

Theorem 6.2. Let W ≥ 6. For every set of indices Λ ⊂ N, the set

FΛ :=

{∑

j∈Λ

(ajCj + bjSj), aj , bj ∈ R, j ∈ Λ, |Λ| = k

}
⊂ ΥW,L,

where

L = 2

⌈
k

bW−2
4 c

⌉
(dlog2(λ)e+ 2), with λ := max Λ,

and the wights and biases in this network are bounded by maxj∈Λ{|aj |, |bj |, 8}.

Proof: With H denoting the hat function from Figure 2, we observe that H◦m = H ◦ · · · ◦H is a
sawtooth function, see Figure 15, i.e., a CPwL function taking alternatively the values 0 and 1 at
its breakpoints `2−m, ` = 0, 1, . . . , 2m. Note that the restriction of the function (2mx− b2mxc) on
each interval [`2−m, (`+ 1)2−m) is a linear function passing through (`2−m, 0) with slope 2m. Using
the definitions of C and H◦m, one can easily see that

C2m(x) = C(2mx− b2mxc) = C(H◦m(x)).
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Since H and C = 1−2H can both be produced by ReLU networks of width 2 and depth 1, it follows
from (13) that C2m ∈ Υ2,m+1, m = 0, 1, . . . , and that all entries of the weight matrices and bias
vectors of this ReLU network are bounded by 8, see (13) and Figure 2.

Next, given an integer j ≥ 1, we find the smallest m ∈ N0 with the property j ≤ 2m. In view
of Cj(x) = C2m(j2−mx), j ≤ 2m, we also derive that Cj ∈ Υ2,m+1 = Υ2,dlog2 je+1. Likewise,
because S can be produced by a ReLU network of width 2 and depth 2 (by virtue of the identity
S(x) = C2(x/2 + 3/8), x ∈ [0, 1]), we can show that Sj ∈ Υ2,m+2 = Υ2,dlog2 je+2. Thus, we have
established that, according to (14), for each j ∈ Λ,

ajCj + bjSj ∈ Υ
4,2dlog2 je+4 ⊂ Υ4,2(dlog2 λe+2), where λ := max Λ, (18)

and all entries of the weight matrices and bias vectors in this neural network are bounded by
max{|aj |, |bj |, 8}. Let us denote by p := 2(dlog2 λe+ 2). By stacking networks on top of each other,
a sum of bW−2

4 c terms ajCj + bjSj belongs to the set Υ4bW−2
4
c,p ⊂ ΥW−2,p. Then, again by (14), a

sum of k ≤ dk/bW−2
4 ce × bW−2

4 c elements ajCj + bjSj belongs to ΥW,dk/b(W−2)/4cep, as announced.
�
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Figure 15: The graphs of H, H◦2, and H◦3.

Remark 6.1. Each element of the set FΛ is described by 2k parameters, while the number of
parameters n(W,L) for the set ΥW,L above has the order of W 2L � Wk log2(λ). Ignoring the
logarithmic factor, this is comparable with 2k only when the width W is viewed as an absolute
constant.

We can take another approach and rather than stacking the networks producing Sj and Cj on the top
of each other, concatenate them into a special network with width W = 4. This way we will obtain
that

FΛ ⊂ Υ4,2k(dlog2(λ)e+2).

Remark 6.2. One can perform Fourier basis approximation via ReLU networks using the standard
approach where, as it has been done for other bases such as wavelets, for example, one directly
approximates each function from the (real) Fourier basis (1, cos(2πkx), sin(2πkx))k≥1 using ReLU
networks of constant width. An effort in this direction is Theorem IV.1 in [12], where using the fact
that cos(ax) is an analytic function, the authors show that for every ε ∈ (0, 1/2) and a ∈ R+, there
is a ReLU network with width W = 16, depth L = O([log(1/ε)]2 + log a), and bounded weights and
biases (by an absolute constant) that outputs S ∈ Υ16,O([log(1/ε)]2+log a) such that

‖S − cos(a·)‖C[−1,1] ≤ ε.
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In particular, for ε = 2−n, a = 2πj, S ∈ Υ16,O(n2+log j). One can now concatenate or stack these
networks, as shown above, to produce a ReLU network whose output approximates a Fourier sum,∑

j∈Λ(aj cos(2πjx) + bj sin(2πjx)) to a certain accuracy. While this is certainly a viable strat-
egy to emulate Fourier basis approximation via ReLU neural networks, it is quite different from
the approach above, where we use directly the highly oscillatory outputs (Ck,Sk)k≥1 of ReLU net-
works with constant width and bounded weights and biases as our building blocks in the approxima-
tion. Even though one can show that (Ck,Sk)k≥1 are linear splines with breakpoints the extrema of
(cos(2πkx), sin(2πkx))k≥1, respectively, that interpolate the latter functions at these points and the
endpoints of [0, 1], and thus can be viewed as approximations to the Fourier basis, they themselves
are Riesz basis for L0

2[0, 1]. The latter fact circumvents the role of the Fourier basis and makes any
error estimates more or less straightforward.

7 Approximation by (deep) neural networks

So far, we have seen in §3, §5, and §6 that ReLU networks can produce free knot linear splines, self-
similar functions, and expansions in Fourier-like Riesz basis of CPwL functions using essentially the
same number of parameters that are used to describe these sets. This implies that ReLU networks
are at least as expressive as any of these sets of functions. In fact, they are at least as expressive as
the union of these sets, which intuitively forms a powerful incoherent dictionary.

We are more interested in the approximation power of deep neural networks rather than their
expressiveness. Of course, one expects these two concepts are closely related. The remainder of this
paper aims at providing convincing results about the approximation power of ReLU networks that
establishes their superiority over the existing and more traditional methods of approximation. We
shall do so by concentrating on special networks Υ

W+2,L with a fixed width W + 2. We introduce
the notation

Υm := Υ
W+2,m ⊂ ΥW+2,m, when m ≥ 1,

and Υ0 := {0}, and formally define the approximation family

Υ := (Υm)m≥0.

The number of parameters determining the set Υm is n(W + 2,m) � W 2m, and in going further,
we shall refer to them as roughly W 2m. Recall that according to Proposition 3.2, this nonlinear
family possesses the following favorable properties:

• Nestedness: Υm′ ⊂ Υm when m′ ≤ m;

• Summation property: Υm′ + Υm ⊂ Υm′+m.
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7.1 Nonlinear approximation

Let X be any Banach space of (equivalence classes of) functions defined on [0, 1]. The typical
examples of X are the Lp[0, 1] spaces, 1 ≤ p ≤ ∞, C[0, 1], Sobolev and Besov spaces. Our only
stipulation on X, at this point, is that it should contain all continuous piecewise linear functions
on [0, 1]. Given f ∈ X, we define its approximation error when using deep neural networks to be

σm(f,Υ)X := inf
S∈Υm

‖f − S‖X , m ≥ 0.

Since Υ0 := {0}, we have σ0(f,Υ)X = ‖f‖X . Given a compact subset K ⊂ X, we define the
performance on K to be

σm(K,Υ)X := sup
f∈K

σm(f,Υ)X , m ≥ 0.

In other words, the approximation error on the class K is the worst error.

In a similar way, we define approximation error for other approximation families, in particular
σm(f,Σ)X and σm(K,Σ)X when Σ := (Σm)m≥0 is the family of continuous piecewise linear func-
tions. We want to understand the decay rate of (σm(f,Υ)X)m≥0 for individual functions f and of
(σm(K,Υ)X)m≥0 for compact classes K ⊂ X and to compare them with the decay rate for other
methods of approximation.

Another common way to understand the approximation power of a specific method of approximation
such as neural networks is to characterize the following approximation classes. Given r > 0, the
approximation class Ar(Υ)X , r > 0, is defined as the set of all functions f ∈ X for which

‖f‖Ar(Υ)X
:= sup

m≥0
(m+ 1)rσm(f,Υ)X

is finite. While approximation rates other than (m + 1)−r are also interesting, understanding the
classes Ar, r > 0, matches many applications in numerical analysis, statistics, and signal processing.
The approximation spaces Ar(Υ)X are linear spaces. Indeed, if f, g ∈ Ar(Υ)X and Sm, Tm ∈ Υm

provide the approximants to f, g satisfying

‖f − Sm‖X ≤M(m+ 1)−r and ‖g − Tm‖X ≤M ′(m+ 1)−r, m ≥ 0,

then Sm + Tm provides an approximant to f + g satisfying

‖f + g − (Sm + Tm)‖X ≤ (M +M ′)(m+ 1)−r ≤ 2r(M +M ′)(2m+ 1)−r, m ≥ 0.

Since Sm + Tm is in Υ2m , we derive that f + g ∈ Ar(Υ)X . We notice in passing that ‖ · ‖Ar(Υ)X
is

a quasi-norm.

Approximation classes are defined for other methods of approximation in the same way as for neural
networks. Thus, given a sequence X := (Xm)m≥0 of sets (linear or nonlinear), X0 := {0}, we define
Ar(X )X as above with Υ replaced by X . The approximation spaces for all classical linear methods of
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approximation have been characterized for all r > 0 whenX = Lp[0, 1], 1 ≤ p <∞, andX = C[0, 1].
For example, these approximation classes are known for approximation by algebraic polynomials, by
trigonometric polynomials, and by piecewise polynomials on an equispaced partition. Interestingly
enough, these characterizations do not expose any advantage of one classical linear method over
another. All of these approximation methods have essentially the same approximation classes.
For example, the approximation classes Ar for approximation in C[0, 1] by piecewise constants on
equispaced partition of [0, 1] are the Lip r spaces when 0 < r ≤ 1. Here, the space Lip r is specified
by the condition

|f(x)− f(y)| ≤M |x− y|r

and the smallest M ≥ 0 for which this holds is by definition the semi-norm |f |Lip r. The space Ar,
0 < r < 1, remains the same if we use trigonometric polynomials of degree m. The notion of
Lipschitz spaces can be extended to r > 1 and then can be used to characterize approximation
spaces Ar when r > 1. We do not go into more detail on approximation spaces for the classical
linear spaces but we refer the reader to [10] for a complete description.

The situation changes dramatically when using nonlinear methods of approximation. There is
typically a huge gain in favor of nonlinear approximation in the sense that their approximation
classes are much larger than for linear approximation, and so it is easier for a function to have the
approximation order O(m−r). We give just one example, important for our discussion of neural
networks, to pinpoint this difference. It is easy to see that any continuous function of bounded
variation is in A1(Σ). Namely, given such a target function f defined on [0, 1] and with total
variation one, we partition [0, 1] into m intervals such that the variation of f on each of these
intervals is 1/m. Then, the CPwL function which interpolates f at the endpoints of these intervals
is in Σm and approximates f with error at most 1/m. Notice that such functions of bounded
variation are far from being in Lip 1 because they can change values quite abruptly. This illustrates
the central theme of nonlinear approximation that their approximation spaces are much larger than
their linear counterparts. We refer the reader to [7] for an overview of nonlinear approximation.

7.2 Approximation of classical smoothness spaces

Let us start this section by revisiting the statement of Theorem 3.1 and Remark 3.3, from where
we derive that for W ≥ 4

Σm ⊂ Υ
W,

⌈
C

W2

⌉
m
, m ≥ q(W − 2),

and
Σm ⊂ Υ

W,2
, 1 ≤ m < q(W − 2),

where q = 2 when 4 ≤ W ≤ 7 and otherwise q = bW−2
6 c. In addition, for any m we can embed

ΥW,m ⊂ Υ
W+2,m

= Υm by adding a source and collation channel. Hence, in the view of the new
notation, Theorem 3.1 can be restated the following way.
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Theorem 7.1. For W ≥ 4 and m ≥ q(W − 2), we have

Σm ⊂ Υγm, where γ = γ(W ) :=

⌈
C

W 2

⌉
,

and thus for any f ∈ C[0, 1]

σγm(f,Υ)C[0,1] ≤ σm(f,Σ)C[0,1].

For 1 ≤ m < q(W − 2),
Σm ⊂ Υ2,

and thus for any f ∈ C[0, 1] we have σ2(f,Υ)C[0,1] ≤ σm(f,Σ)C[0,1].

Therefore, all upper bounds for the error of best approximation σm(f,Σ)C[0,1] by the family Σ of
free knot linear splines will hold for the error of best approximation σγm(f,Υ)C[0,1] by the family
Υ. We refer the reader to the paper [7] for a detailed description of free knot spline approximation.
To orient the discussion that follows, we mention a small set of results on the approximation of
functions in C[0, 1]. One of the best known results for approximation by CPwL functions is that
any Lip 1 function can be approximated in the norm of C[0, 1] by a CPwL with n breakpoints to
accuracy ‖f‖Lip 1n

−1. This estimate can already be achieved by linear methods of approximation
since the breakpoints in this result can be chosen equally spaced, and thus the approximation need
not be chosen to nonlinearly dependent of f . On the other hand, exploiting the nonlinearity of Σn,
one can show that the above rate of approximation O(n−1) holds with the much weaker assumption
f ′ ∈ L1[0, 1] in place of the Lip 1 assumption (which is equivalent to assuming f ′ ∈ L∞[0, 1]). This
fact does not hold when using CPwL functions with equally spaced breakpoints, and indeed, here
one has to take full advantage of the nonlinear structure of Σn. It follows that these results hold
equally well when using the approximation family Υ in place of Σ.

However, the question is can we say more when using deep neural networks in approximating these
traditional smoothness classes? The answer is quite surprising and indicative. A series of results
beginning with Yarotsky [36, 37, 38] and continuing in [29, 17] show that the approximation rate
of some classical smoothness classes, e.g. Lipschitz classes, is dramatically better when using deep
networks. Results are now known for approximating the unit ball U(W s(Lp[0, 1]d)), s > 0, of this
Sobolev space with the approximation error measured in Lp[0, 1]d for the same p ∈ [1,∞] . We limit
our discussion to the approximation in the C[0, 1] norm of classes like Lip 1 and refer the reader to
the above references for the full spectrum of results. The first result in this direction [37] showed
that for W = 5,

sup
f∈Lip 1

inf
S∈ΥW,n

‖f − S‖C[0,1] ≤ C
|f |Lip 1

n lnn
. (19)

This was a small but still surprising improvement over the optimal rate O(n−1) known for approx-
imation by Σn. Later, for W = 12, this was improved to

sup
f∈Lip 1

inf
S∈ΥW,n

‖f − S‖C[0,1] ≤ C|f |Lip 1n
−2. (20)
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This is now known to be the optimal rate which cannot be improved. We shall return to discussing
this result in more detail in §7.2.2 and §8. For now, we want to show how the original result (19)
can be obtained from Theorem 5.1. The stronger results (20) require a different technique known
as bit extraction.

7.2.1 The space Lip α

We begin by discussing the Lip α spaces, 0 < α ≤ 1. For this, we isolate a simple remark about the
Kolmogorov entropy of the unit ball of Lip α. Let Kα be the set of functions f : [0, 1] 7→ R with
|f |Lip α ≤ 1 vanishing at the endpoints 0 and 1.

Lemma 7.2. For each 0 < α ≤ 1 and for each integer k ≥ 2, there are at most 3k patterns
S1, . . . , S3k from S(ξ), ξ = (0, 1

k , . . . ,
k−1
k , 1), such that whenever g ∈ Kα, there is a j ∈ {1, . . . , 3k}

with
‖g − Sj‖C[0,1] ≤ 2hα, h :=

1

k
. (21)

In other words, the set Kα can be covered by 3k balls in C[0, 1] of radius 2k−α with centers from S(ξ).

Proof: We consider the following set P of patterns from S(ξ). For T to be in P, we require that
T (ξj) = mjh

α, with m0, . . . ,mk integers satisfying the conditions

m0 = mk = 0, |mj −mj−1| ≤ 1, j = 1, . . . , k. (22)

There are at most 3k such patterns, i.e., #(P) ≤ 3k.

For the proof of our claim, given g ∈ Kα, we first notice that |g(ξj) − g(ξj−1)| ≤ hα, j = 1, . . . , k.
We then approximate g by the CPwL function S ∈ S(ξ), where the values S(ξj) are of the form
βjh

α, βj ∈ Z, and are chosen so that S(ξj) = βjh
α is the closest to g(ξj), j = 1, . . . , k. Note that

this gives β0 = βk = 0 since g(ξ0) = 0 = g(ξk) and

|S(ξj)− g(ξj)| ≤ hα/2. (23)

When assigning the values S(ξj), starting with S(ξ0) = 0 and moving from left to right, if it happens
that there are two possible choices for βj (which happens if g(ξj) ± hα/2 is an integer multiple of
hα), we select the βj that is closest to the already determined βj−1. Since

|βj − βj−1|hα = |S(ξj)− S(ξj−1)|
≤ |S(ξj)− g(ξj)|+ |g(ξj)− g(ξj−1)|+ |g(ξj−1)− S(ξj−1)|
≤ hα/2 + hα + hα/2 = 2hα,

we have |βj − βj−1| ≤ 2. But the case of equality is not possible since it would mean that at step j
we have not selected βj to be the closest to βj−1. Therefore |βj − βj−1| ≤ 1, and thus (22) holds,
i.e., the constructed approximant S is a pattern from P. Finally, we notice that any pattern from

26



P has slopes with absolute value at most hα−1. Hence, for any x ∈ [0, 1], picking the point ξj the
closest to x, we have

|g(x)−S(x)| ≤ |g(x)− g(ξj)|+ |g(ξj)−S(ξj)|+ |S(ξj)−S(x)| ≤ (h/2)α +hα/2 +hα−1(h/2) ≤ 2hα,

where we used (23) and the fact that |x−ξj | ≤ h/2. Taking the maximum over x ∈ [0, 1] establishes
(21) and concludes the proof. �

The following theorem proves an estimate like (19) for Lip α spaces.

Theorem 7.3. Let W ≥ 8. If X = C[0, 1] and f ∈ Lip α, 0 < α ≤ 1, then

σm(f,Υ)X ≤ C(W )
|f |Lip α

(m lnm)α
, m ≥ 2. (24)

Proof: Without loss of generality, we can assume that |f |Lip α = 1. Fixing f and m, we first choose
T as the piecewise linear function which interpolates f at the equally spaced points x0, . . . , xm, where
xi := i/m, i = 0, . . . ,m. Since f and T agree at the endpoints of the interval Ji := [xi, xi+1], the
slope of T on Ji has absolute value at most m1−α. Therefore,

|T (x)− T (y)| ≤ m1−α|x− y| ≤ |x− y|α, x, y ∈ Ji,

and hence T is also in Lip α with semi-norm at most one on each of these intervals.

We now define g := f − T and write g =
∑m

i=1 gχJi . Each gi := gχJi is a function in Lip α with
|gi|Lip α ≤ 2. Let k be the largest integer such that 3kk ≤ m and let P = {S1, . . . , S3k} be the set of
the 3k patterns given by Lemma 7.2. Applying this lemma to each of the functions ḡi : [0, 1]→ R,
defined by ḡi(x) := 2−1mαgi((x+ i)/m) ∈ Kα, we find a pattern Sji ∈ P, Sji : [0, 1]→ R, such that

‖ḡi − Sji‖C[0,1] ≤ 2k−α.

Shifting back to the interval Ji provides a function Sji ∈ P such that

|gi(x)− 2m−αSji(m(x− xi))| ≤ 4(km)−α, x ∈ Ji,

and therefore the function T̂ given by

T̂ (x) := T (x) + 2m−α
m∑

i=1

Sji(m(x− xi))χJi(x) (25)

approximates f to accuracy 4(km)−α in the uniform norm.

For each j = 1, . . . , 3k, we consider the (possibly empty) set of indices Λj = {i ∈ {1, . . . ,m} : ji = j}.
We have

T̂ = T +

3k∑

j=1

Tj , where Tj := 2m−α
∑

i∈Λj

Sj(m(x− xi)).
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Since T ∈ Σm, Remark 3.3 says that T belongs to Υ
W,L0 with either W 2L0 � n(W,L0) ≤ C ′m or

L0 = 2. According to Theorem 5.1, each function Tj is in Υ
W,Lj with either W 2Lj � n(W,Lj) ≤

C1(k + mj) + C2W
2 or Lj = 2, where mj := |Λj |. Therefore, in view of (14), we derive that T̂

belongs to Υ
W,L with L = L0 +

∑3k

j=1 Lj , and

L = L0 +
3k∑

j=1

Lj ≤
1

W 2


C ′m+ C13kk + C1

3k∑

j=1

mj


+ C33k ≤

⌈
C̃1

W 2
+ C̃2

⌉
m = c(W )m,

where we have used the facts that 3kk ≤ m and
∑3k

j=1mj = m. This shows that T̂ ∈ Υc(W )m and
in turn that

σc(W )m(f,Υ)C[0,1] ≤ ‖f − T̂‖C[0,1] ≤
4

(km)α
≤ C̃

(m lnm)α
,

where in the last inequality we have used that k ≥ c lnm since 3k+1(k + 1) > m. Up to the change
of m in c(W )m, this is the result announced in (24). �

7.2.2 Other classical smoothness spaces via K-functionals

In this section, we want to show how the existing theorems on approximating classical smoothness
classes with deep networks have a simple extension to more general smoothness classes using methods
of K-functionals. Since we do not wish to delve too deeply into the theory of smoothness spaces in
the present paper, we illustrate this with just one example.

Theorem 7.4. Let W ≥ 12. If X = C[0, 1] and f ∈ C[0, 1] satisfies f ′ ∈ Lp[0, 1], 1 ≤ p ≤ ∞, then

σm(f,Υ)X ≤ C(W )‖f ′‖Lpm
−2+1/p, m ≥ 2. (26)

Proof: When p = ∞, (26) follows from (20) since f ′ ∈ L∞[0, 1] is equivalent to f ∈ Lip 1 and
|f |Lip 1 = ‖f ′‖L∞ . The case p = 1 follows from

σγm(f,Υ)X ≤ σm(f,Σ)X ≤ ‖f ′‖L1m
−1, m ≥ 1. (27)

Here, the first inequality follows from Theorem 7.1 and the second inequality is a consequence of
an estimate (already mentioned) for CPwL approximation of f with f ′ ∈ L1[0, 1]. Now, given
1 < p <∞ and f ∈ C[0, 1] with f ′ ∈ Lp[0, 1], for any t > 0, we can write

f = f0 + f1,

where
max{‖f ′1‖L1 , t‖f ′0‖L∞} ≤ ‖f ′1‖L1 + t‖f ′0‖L∞ ≤ 2‖f ′‖Lpt

1−1/p.
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This is a well-known and easily derived result for K-functionals. We take t := m−1 and find

σ2γm(f,Υ)X ≤ σγm(f0,Υ)X + σγm(f1,Υ)X

≤ C(W ){‖f ′0‖L∞m−2 + ‖f ′1‖L1m
−1}

≤ C(W )‖f ′‖Lp{m−2t−1/p +m−1t1−1/p}
≤ C(W )‖f ′‖Lpm

−2+1/p,

where we used the summation property for the elements of the family Υ. �

Remark 7.1. This theorem is not contained in the existing results mentioned above. One could
use the existing results together with the Sobolev embedding which says that f ′ ∈ Lp implies f is in
Lip (1−1/p) and obtain the rate O(m−2+2/p). However, this is worse than that given in the theorem.
The theorem shows an improvement in the approximation rate when using deep networks in that the
rate O(m−1) obtained when using Σm is now replaced by m−2+1/p when using deep networks. Note
however that this improved rate lessens as we near the Sobolev embedding line.

7.3 The power of depth

In this subsection, we highlight several other classes of functions whose approximation rates by
neural networks far exceed their approximation rates by free knots linear splines or any other
standard approximation family. Our constructions are based on variants of the following simple
observation.

Proposition 7.5. For functions fk ∈ Υk satisfying ‖fk‖C[0,1] = 1 for all k ≥ 1 and for a sequence
(βk)k≥1 in `1(N), the function

F :=
∑

k≥1

βkfk

has approximation error satisfying

σm2(F,Υ)C[0,1] ≤
∑

k>m

|βk|, m ≥ 1.

Proof. The function Sm :=
∑m

k=1 βkfk belongs to Υm2 , thanks to the summation and inclusion
properties for Υ. A triangle inequality gives

‖F − Sm‖C[0,1] ≤
∑

k>m

|βk|,

and the statement follows immediately. �

Remark 7.2. When the functions fk are related to one another, the proposition can be improved by
replacing m2 with a smaller quantity. For example, if fk = φ◦k for a fixed function φ in Υw,`, with
width 2 ≤ w ≤W − 2 and fixed depth `, then Proposition 4.3 reveals that m2 can be changed to `m.

We now present some classes of such functions F that are well approximated by ReLU networks.
For the most part, these functions cannot be well approximated by standard approximation families.

29



7.3.1 The Takagi class of functions

For our first set of examples, let us recall that functions of the form

F =
∑

k≥1

tkg ◦ ψ◦k, |t| < 1, (28)

with ψ : [0, 1] → [0, 1] and g : [0, 1] → R, provide primary examples of self similar functions and
dynamical systems [35]. If g ∈ ΥW1,` and ψ ∈ ΥW2,`, with W1 + W2 = W , Proposition 4.4 implies
that the partial sum Sm :=

∑m
k=1 t

kg◦ψ◦k belongs to Υ
W+2,`(m+1)

= Υ`(m+1). Therefore, in this
case, the function F defined via (28) is approximated by the partial sum Sm with exponential
accuracy by ReLU networks,

σ`(m+1)(F,Υ)C[0,1] ≤ C
|t|m+1

1− |t| , m ≥ 1.

Now, we consider a special class of functions. For this purpose, we recall that the hat function
H ∈ Υ2,1 and its k-fold composition H◦k := H ◦H ◦ · · · ◦H, according to the composition property
(13), belongs to Υ

2,k. On the other hand, the same function H◦k is in Σn only if n is exponential in
k. For an absolutely summable sequence (ck)k≥1 of real numbers, we consider continuous functions
F of the form

F :=
∑

k≥1

ckH
◦k,

approximations to which are produced by the special networks shown in Figure 16. The collection
of all such functions is called the Takagi class. It contains a number of interesting and important
examples. A good source of information on the Takagi class is [1], from which the two examples
below are taken.

input x

output

source
channel

collation
channel

1 1 1 1

1

1

a

2

2
-4

-4

1

2

2
-4

-4

1

2c1 2c2-4c1 -4c2
. . .

. . .

. . .

. . .

2

2
-4

-4

1

-4cm−1 2cm−1

2cm-4cm

1

Figure 16: The computation graph associated to the approximation of the Takagi class.

For the first example, we take ck := 2−k, which gives the Takagi function

T :=
∑

k≥1

2−kH◦k.
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From Remark 7.2, we have
σm(T,Υ)X ≤ 2−m, m ≥ 1,

and so theoretically T can be approximated with exponential accuracy by ReLU networks with
roughly W 2m parameters. In practice, see Figure 16, we can approximate it using m parameters.
However, T is nowhere differentiable and so it has very little smoothness in the classical sense. This
means that all of the traditional methods of approximation will fail miserably to approximate it.
Note that the function T has self similarity, in that it satisfies a simple refinement equation.

Other examples take a highly lacunary sequence of coefficients and thereby construct functions in the
Takagi class that do not satisfy a Lipschitz condition of any order and yet they can be approximated
to exponential accuracy by Υ. Many functions from the Takagi class are fractals, in the sense that
the Hausdorff dimension of their graph is strictly greater than one.

We do not go into the Takagi class more deeply but refer the reader to [1, 14] where the properties and
applications of the Takagi functions are given as well as numerous examples of similar constructions.
The main point to draw from these examples is that the approximation classes Ar for r large contain
many functions which are not smooth in any classical sense. This point was also made in [12],
where the authors show that oscillatory textures can be approximated with exponential accuracy,
see Proposition IX.2, and that, see Proposition IX.3, the Weierstrass function

Wp,a(x) :=

∞∑

k=0

pk cos(akπx), p ∈ (0, 1/2), a ∈ R+, ap ≥ 1,

can be approximated by S ∈ Υ20,Cn3 with exponential accuracy 2−n, that is

‖Wp,a − S‖C[−1,1] ≤ 2−n.

7.3.2 Analytic functions

Another example in the Takagi class is the function, see [36],

x(1− x) =
∑

k≥1

4−kH◦k. (29)

This formula is used as a starting point to show that analytic functions are well approximated by
deep neural networks (see [36, 21, 11]), as we briefly discuss below.

It follows from (29) that the function x2 is approximated with exponential accuracy by ReLU

networks From this, one derives that all power functions xk also are approximated with exponential
accuracy. Then, using the summation property, one concludes that analytic functions and functions
in Sobolev spaces are approximated with the same accuracy as their approximation by algebraic
polynomials, up to logarithmic factors. Similarly, we can approximate functions on [0, 1] from
their power series representation. The point we emphasize here is the flexibility of ReLU networks.
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On one hand, classes of functions with little classical smoothness are well approximated by ReLU
networks (some even with exponential accuracy), while, on the other hand, ReLU networks still
retain the accuracy of well known approximation methods for classically smooth functions.

8 Neural network approximation as manifold approximation

Up to this point, we have reflected on the expressive power and the corresponding approximation
power of deep ReLU networks. In other words, we wondered how well the best approximation from
Υ` to a target function performs. An important practical issue is the construction of reasonable
methods of approximation that yield near-best approximations to any given target function f ∈ X
with e.g. X = C[0, 1].

To discuss this problem, we need to formulate what would be considered a reasonable approximation
procedure. The set Υ` is described by roughly W 2` parameters, which are identified by a point in
Rm, m = CW 2`. We let M = Mm be the mapping that sends z ∈ Rm to the function M(z)

generated by the neural network with the chosen parameters z. We view the collectionM =Mm

of all M(z), z ∈ Rm, as an m-dimensional manifold. Here, in contrast to the usual use of the term
manifold in topology, we do not assume a priori any particular smoothness of the mapping M . In
this context, we also view any approximation method as providing a mapping a = am : X → Rm

which, for a given f ∈ X, selects the parameters of the network used to approximate f . The
approximation to f is then

Am(f) = Mm(am(f)), m ≥ 0.

A fundamental question for both theory and numerical practice is what conditions to impose on am
and Mm so that the resulting scheme Am is reasonable. In keeping with the notion of numerical
stability, we could require that each of these mappings is a Lip 1 function with a fixed Lipschitz
constant Γ independent of m. This means that there is a norm ‖ · ‖ on Rm (typically an `p norm)
such that, for any f1, f2 ∈ X,

‖am(f1)− am(f2)‖ ≤ Γ‖f1 − f2‖X .

The stability of Mm means that, for any z1, z2 ∈ Rm,

‖Mm(z1)−Mm(z2)‖X ≤ Γ‖z1 − z2‖.

One can lessen the demand on numerical stability to requiring only that the mappings am and Mm

are continuous, not necessarily Lipschitz. This weaker assumption was used in the definition of
manifold widths [8]. This manifold width of a compact set K ⊂ X is defined as

δm(K) := inf
(a,M)

sup
f∈K
‖f −M(a(f))‖X ,

where the infimum is taken over all continuous maps a : K → Rm and M : Rm → X. It is
shown in [9] that this milder requirement still puts a restriction on how well sets characterized
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by classical smoothness can be approximated. For example, if K is the unit ball of Lip α, then
δm(K) ≥ Cm−α. Therefore, the improvements discussed in §7.2 cannot be obtained with continuous
selection of parameters. This lack of continuity for some approximation schemes was also recognized
in [18]. This may be a crucial point in the framing of results on the instability of certain methods for
constructing deep network approximations to target functions from data via optimization methods
(such as least squares or constrained least squares methods).
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9 Appendix

9.1 The matrices of Lemma 3.3

In order to explicitly write the affine transforms A(1) and A(2) that determine the ReLU net, we
describe here one of the possible ways to partition the set of indices Λ so that the constant sign and
separation properties are satisfied. To do this, we first consider Λ+ and only the main breakpoints ξj
with indices j for which j mod 3 = `. We collect into the set Λ`,+i all indices k ∈ Λ+ that correspond
to the i-th hat function Hi,j associated to a principal breakpoint ξj with the above mentioned
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property. Recall that there are q hat functions Hi,j associated to each principal breakpoint ξj . We
do this for every ` = 0, 1, 2, and Λ−, and we get the partition

Λ`,+i := {s : s ∈ Λ+ and φs = Hi,j with j mod 3 = `},
Λ`,−i := {s : s ∈ Λ− and φs = Hi,j with j mod 3 = `},

where ` = 0, 1, 2, i = 1, . . . , q. The matrices that determine the special network are

M (1) =
[
1 1 . . . 1 0

]>
, b(1) =

[
0 ξ1 . . . ξW−2 0

]>
,

M (2) =




1 0 . . . 0 0

m
(2)
2,1 m

(2)
2,2 . . . m

(2)
2,W−1 0

. . . . . .

m
(2)
W−1,1 m

(2)
W−1,2 . . . m

(2)
W−1,W−1 0

0 0 . . . 0 1



, b(2) =




0

b
(2)
2

. . .

b
(2)
W−2

0




M (3) =
[
0 ε

(3)
1 . . . ε

(3)
W−2 1

]
, b(3) = 0,

where ε(3)
k = 1 if Λk ⊂ Λ+, ε

(k)
k = −1 if Λk ⊂ Λ−, and ε

(3)
k = 0 if Λk = ∅. Next, we demonstrate

how to find the entries of one row in M (2). The rest of the rows are computed likewise. The index
k = 1, . . . ,W − 2 in (10) corresponds to a different labeling of the index set

{(i, `,+), (i, `,−), i = 1, . . . , q, ` = 0, 1, 2},

of the particular partition we work with here. We take the index (1, 1,+) and compute the corre-
sponding T̃ ,

T̃ := T(1,1+) =
∑

s∈Λ1,+
1

csφs = [S̃]+,

see Figure 6, where S̃ is a CPwL function with breakpoints the principal breakpoints ξ1, . . . , ξW−2,
with the property

S̃(ξ3s+1) = c3s+1, S̃(x(3s+1)q−1) = S̃(x(3s+1)q+1) = 0, s = 0, . . . ,

⌊
W − 3

3

⌋
.

Then the entries in the second row in M (2) and b(2) are the coefficients from the representation

S̃(x) = m
(2)
2,1x+

W−2∑

j=2

m
(2)
2,j (x− ξj)+ + b

(2)
2 .
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9.2 Theorem 3.1, Case 4 ≤ W ≤ 7

In this case we have to show that for every n ≥ 1 the set Σn of free knot linear splines with n

breakpoints is contained in the set ΥW,L of functions produced by width-W and depth-L ReLU

networks where

L =





2
⌈

n
2(W−2)

⌉
, n ≥ 2(W − 2),

2, n < 2(W − 2),

and whose number of parameters

n(W,L) ≤




Cn, n ≥ 2(W − 2),

W 2 + 4W + 1, n < 2(W − 2),

where C is an absolute constant. We start with the case W − 2 = 2. Given n ≥ 4, we choose
L := dn4 e. If n < 4L, we add artificial breakpoints so that we represent T ∈ Σn ⊂ Σ4L as

T (x) = ax+ b+

4L∑

j=1

cj(x− ξj)+ = ax+ b+

2L∑

j=1

Sj , Sj := c2j−1(x− ξ2j−1)+ + c2j(x− ξ2j)+.

Now we can construct the special network with output Υ
4,2L that generates T via the successive

transformations A(j) given by the matrices

M (1) =
[
1 1 1 0

]>
, b(1) =

[
0 −ξ1 −ξ2 0

]>
,

The jth layer, j = 2, . . . , 2L, produces Sj−1 in its CC node via the matrix

M (j) =




1 0 0 0

1 0 0 0

1 0 0 0

0 c2j−3 c2j−2 1


 , b(j) =




0

−ξ2j−1

−ξ2j

0


 .

Finally, the output layer is given by the matrix

M (2L) =
[
a c2L−1 c2L 1

]
, b(2L) = b,

where the first entry a and the bias b account for the linear function ax + b in T . In this case we
have Σ4L ⊂ Υ

4,2L ⊂ Υ4,2L, with number of parameters

n(4, 2L) = 40L− 7 = 40
⌈n

4

⌉
− 7 < 10n+ 33 < 19n, n ≥ 4.

For the case n < 4, we again add artificial breakpoints so that we represent T ∈ Σn ⊂ Σ4 as

T (x) = ax+ b+

4∑

j=1

cj(x− ξj)+ = ax+ b+

2∑

j=1

Sj , Sj := c2j−1(x− ξ2j−1)+ + c2j(x− ξ2j)+,
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and as above construct a special network with output Υ
4,2 for which Σn ⊂ Υ

4,2, and whose param-
eters

n(4, 2) = 33 = W 2 + 4W + 1, W = 4.

Now, for the case (W − 2) ∈ {3, 4, 5}, let us first consider n ≥ 2(W − 2) and take L :=
⌈

n
2(W−2)

⌉
.

If n < 2(W − 2)L, we add artificial breakpoints so that we represent T ∈ Σn ⊂ Σ2(W−2)L. We do
the same construction as in the case W − 2 = 2, by dividing the indices {1, . . . , 2(W − 2)L} into 2L

groups of W − 2 numbers, as shown in

T (x) = ax+ b+

2(W−2)L∑

j=1

cj(x− ξj)+ = ax+ b+
2L∑

j=1

Sj , Sj :=
W−3∑

i=0

c(W−2)j−i(x− ξ(W−2)j−i)+,

and execute the same construction as before by concatenating the networks producing Sj . In this
case, we have Σn ⊂ Σ2(W−2)L ⊂ Υ

W,2L, and when n ≥ 2(W − 2),

n(W, 2L) = 2W (W + 1)

⌈
n

2(W − 2)

⌉
− (W − 1)2 + 2 <

W (W + 1)

W − 2
n+W 2 + 4W + 1 < 25n.

When n < 2(W − 2), we again add artificial breakpoints so that we represent T ∈ Σn ⊂ Σ2(W−2) as

T (x) = ax+ b+

2(W−2)∑

j=1

cj(x− ξj)+ = ax+ b+
2∑

j=1

Sj , Sj :=
W−3∑

i=0

c(W−2)j−i(x− ξ(W−2)j−i)+,

and as above generate a special network that outputs Υ
W,2 with depth L = 2 for which Σn ⊂ Υ

W,2,
and whose parameters

n(W, 2) = 2W (W + 1)− (W − 1)2 + 2 = W 2 + 4W + 1, n < 2(W − 2).

This completes the proof. �

9.3 Proof of Theorem 4.1

Proof: Note that for every k-tuple (S̃k, · · · , S̃1) ∈ Σnk
× · · · × Σn1 , we can find another k-tuple

(Sk, . . . , S1) ∈ Σnk
×· · ·×Σn1 , which we call a representative of the composition, with the properties:

• Sj([0, 1]) ⊂ [0, 1], j = 1, . . . , k − 1.

• S̃k ◦ · · · ◦ S̃1 = Sk ◦ · · · ◦ S1.

Indeed, if we denote by m1 := minx∈[0,1] S̃1(x), M1 := maxx∈[0,1] S̃1(x), define inductively

mj := min
x∈[mj−1,Mj−1]

S̃j , Mj := max
x∈[mj−1,Mj−1]

S̃j , j = 2, . . . , k − 1,

38



and consider the functions

S1 :=
S̃1 −m1

M1 −m1
∈ Σn1 ,

Sj(x) :=
S̃j(x(Mj−1 −mj−1) +mj−1)−mj

Mj −mj
∈ Σnj , j = 2, . . . , k − 1,

Sk(x) := S̃k(x(Mk−1 −mk−1) +mk−1).

The k-tuple (Sk, . . . , S1) will be a representative of the composition S̃k◦. . .◦S̃1. So, in going further,
we will always assume that we are dealing with representatives of all compositions we consider and
with ReLU networks that output these representatives.

Relation (11) follows from Proposition 4.2 and Theorem 3.1. Indeed, if we fix an element in
Σnk◦···◦n1 := {S̃k ◦· · ·◦ S̃1 : S̃j ∈ Σnj , j = 1, . . . , k} and consider its representative (Sk, . . . , S1), each
Sj in the composition Sk ◦ · · · ◦ S1 can be produced by a ReLU network with width W and depth

Lj = 2

⌈
nj

bW−2
6 c(W − 2)

⌉
,

and therefore, part (i) of Proposition 4.2 ensures that Sk ◦ · · · ◦S1 ∈ ΥW,
∑k

j=1 Lj . A similar estimate
as in the proof of Theorem 3.1 yields

n(W,L) < 34
k∑

j=1

nj + 2k(W 2 +W ),

as desired.

To establish (12), for each i = 1, . . . ,m, let us denote by Ni the ReLU network from (11) with
width W − 2 that produces the composition Si,`i ◦ · · · ◦ Si,1 and has depth

Li = L(ni,`i , . . . , ni,1) = 2

`i∑

j=1

⌈
ni,j

bW−4
6 c(W − 4)

⌉
.

Then, Proposition 4.2, part (ii) gives

S =
m∑

i=1

aiSi,`i ◦ · · · ◦ Si,1 ∈ Υ
W,L

,

with

L =

m∑

i=1

Li = 2

m∑

i=1

`i∑

j=1

⌈
ni,j

bW−4
6 c(W − 4)

⌉
.

A similar estimate as in the proof of Theorem 3.1 yields

n(W,L) < 44

m∑

i=1

`i∑

j=1

ni,j + 2W (W + 1)

m∑

i=1

`i.

As discussed in Remark 3.1, Υ
W,L can always be viewed as a subset of ΥW,L, and the proof is

completed. �
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9.4 Proof of Proposition 6.1

Let us first start with the notation

1{i=j} :=





1, i = j,

0, i 6= j,

and isolate the following technical observation.

Lemma 9.1. For any nonnegative sequence u ∈ `2(N),

∑

k,`≥1
k 6=`

uku`
∑

m,n≥0

1

(2m+ 1)2

1

(2n+ 1)2
1{(2m+1)k=(2n+1)`} ≤

π4

192
‖u‖22. (30)

Proof. For each integer m ≥ 0, let us introduce the sequence u(2m+1) ∈ `2(N) defined by

u
(2m+1)
j =

{
u j

2m+1
, if j ∈ (2m+ 1)N,

0, if j 6∈ (2m+ 1)N,

i.e., we consider a new sequence obtained from the original one by separating every two consecutive
terms with 2m zeros, starting with 2m zeros. We easily see that

〈u(2m+1), u(2n+1)〉 =
∑

j∈N
u

(2m+1)
j u

(2n+1)
j =

∑

k,`∈N
uku`1{(2m+1)k=(2n+1)`},

and in particular ‖u(2m+1)‖22 = ‖u‖22 for every m ≥ 0. Thus, the left-hand side of (30), which we
denote by Σ, can be written as

Σ =
∑

m,n≥0
m 6=n

1

(2m+ 1)2

1

(2n+ 1)2

∑

k,`≥1

uku`1{(2m+1)k=(2n+1)`}

=
∑

m,n≥0
m 6=n

1

(2m+ 1)2

1

(2n+ 1)2
〈u(2m+1), u(2n+1)〉

=

∥∥∥∥
∑

m≥0

1

(2m+ 1)2
u(2m+1)

∥∥∥∥
2

2

−
∑

m≥0

1

(2m+ 1)4
‖u‖22. (31)

By a simple triangle inequality, we have, see [32], Chapter 2, Exercise 6,
∥∥∥∥
∑

m≥0

1

(2m+ 1)2
u(2m+1)

∥∥∥∥
2

≤
∑

m≥0

1

(2m+ 1)2
‖u‖2 =

π2

8
‖u‖2. (32)

Moreover, it is well-known that, see [32], Chapter 3, Exercise 8(a),

∑

m≥0

1

(2m+ 1)4
=
π4

96
. (33)
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Substituting (32) and (33) into (31) yields the announced result. �

Proof of Proposition 6.1. We equivalently prove the result for the L2-normalized version of the
system (Ck,Sk)k≥1, i.e., for (C̃k :=

√
3 Ck, S̃k :=

√
3 Sk)k≥1. Let (ck, sk)k≥1 denote the orthonormal

basis for L0
2[0, 1] made of the usual trigonometric functions

ck(x) =
√

2 cos(2πkx), sk(x) =
√

2 sin(2πkx), x ∈ [0, 1].

It is routine to verify (by computing Fourier series) that

C = λ
∑

m≥0

1

(2m+ 1)2
c2m+1, S = λ

∑

m≥0

(−1)m

(2m+ 1)2
s2m+1,

for some constant λ > 0, from which one immediately obtains that, for any k ≥ 1,

C̃k = µ
∑

m≥0

1

(2m+ 1)2
c(2m+1)k, S̃k = µ

∑

m≥0

(−1)m

(2m+ 1)2
s(2m+1)k,

for some constant µ > 0. Notice that this implies C̃k ⊥ s`, S̃k ⊥ c`, and C̃k ⊥ S̃` for all k, ` ≥ 1.
Moreover, the normalization ‖C̃k‖L2[0,1] = ‖S̃k‖L2[0,1] = 1 gives

µ2
∑

m≥0

1

(2m+ 1)4
= 1, i.e., µ2π

4

96
= 1.

Let us introduce operators TC , TS defined for v ∈ `2(N) and j ∈ N, by

TC(v)j =
∑

k≥1

vk〈C̃k, cj〉 = µ
∑

k≥1

vk
∑

m≥0

1

(2m+ 1)2
1{(2m+1)k=j},

TS(v)j =
∑

k≥1

vk〈S̃k, sj〉 = µ
∑

k≥1

vk
∑

m≥0

(−1)m

(2m+ 1)2
1{(2m+1)k=j},

and let us first verify that these are well-defined operators from `2(N) to `2(N), i.e., that both
‖TCv‖2 and ‖TSv‖2 are finite when v ∈ `2(N). To do so, we observe that

‖TCv‖22 = µ2
∑

j≥1

∑

k,`≥1

vkv`
∑

m,n≥0

1

(2m+ 1)2

1

(2n+ 1)2
1{(2m+1)k=j}1{(2n+1)`=j}

= Σ(=) + Σ(6=),

where Σ(=) represents the contribution to the sum when k and ` are equal and Σ(6=) represents the
contribution to the sum when k and ` are distinct. We notice that

Σ(=) =
∑

k≥1

v2
k µ

2
∑

m≥0

1

(2m+ 1)4

∑

j≥1

1{(2m+1)k=j} =
∑

k≥1

v2
k µ

2
∑

m≥0

1

(2m+ 1)4
=
∑

k≥1

v2
k.
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Therefore, relying on Lemma 9.1, we obtain
∣∣‖TCv‖22 − ‖v‖22

∣∣ =
∣∣Σ(6=)

∣∣ ≤ µ2
∑

k,`≥1
k 6=`

|vk||v`|
∑

m,n≥0

1

(2m+ 1)2

1

(2n+ 1)2

∑

j≥1

1{(2m+1)k=j}1{(2n+1)`=j}

= µ2
∑

k,`≥1
k 6=`

|vk||v`|
∑

m,n≥0

1

(2m+ 1)2

1

(2n+ 1)2
1{(2m+1)k=(2n+1)`}

≤ µ2 π
4

192
‖v‖22 =

1

2
‖v‖22. (34)

This clearly justifies that ‖TCv‖22 <∞, and ‖TSv‖22 <∞ is verified in a similar fashion. In fact, the
inequality (34) and the analogous one for TS show that

‖T ∗CTC − I‖2→2 = max
‖v‖2=1

|〈v, (T ∗CTC − I)v〉| ≤ 1

2
, ‖T ∗STS − I‖2→2 ≤

1

2
. (35)

This ensures that the operators T ∗CTC and T ∗STS are invertible. Let us assume for a while that the
operators TCT ∗C and TST

∗
S are also invertible. Then we derive that TC is invertible with inverse

(T ∗CTC)
−1T ∗C , since (T ∗CTC)

−1T ∗CTC = I is obvious and TC(T
∗
CTC)

−1T ∗C = I is equivalent, by the
invertibility of TCT ∗C , to TCT

∗
CTC(T

∗
CTC)

−1T ∗C = TCT
∗
C , which is obvious. We derive that TS is

invertible in a similar fashion. From here, we can show that the system (C̃k, S̃k)k≥1 spans L0
2[0, 1].

Indeed, we claim that any f ∈ L0
2[0, 1] can be written, with α := (〈f, cj〉)j≥1 and β := (〈f, sj〉)j≥1,

as
f =

∑

k≥1

(T−1
C α)kC̃k +

∑

k≥1

(T−1
S β)kS̃k.

This identity is verified by taking the inner product of partial sums with the cj and sj . Indeed,
〈
f −

K∑

k=1

(T−1
C α)kC̃k −

K∑

k=1

(T−1
S β)kS̃k, cj

〉
= 〈f, cj〉 −

K∑

k=1

(T−1
C α)k〈C̃k, cj〉 − 0

=
(
TC(T

−1
C α)

)
j
−
(
TC(T

−1
C α){1,...,K}

)
j

=
(
TC(T

−1
C α){K+1,...}

)
j
.

After a similar calculation with sj , and in view of ‖TC‖22→2 = ‖T ∗CTC‖2→2 ≤ 3/2, it follows that
∥∥∥∥∥f −

K∑

k=1

(T−1
C α)kC̃k −

K∑

k=1

(T−1
S β)kS̃k

∥∥∥∥∥

2

L2[0,1]

≤
∥∥TC(T−1

C α){K+1,...}
∥∥2

2
+
∥∥TS(T−1

S α){K+1,...}
∥∥2

2

=
3

2

(∥∥(T−1
C α){K+1,...}

∥∥2

2
+
∥∥(T−1
S α){K+1,...}

∥∥2

2

)

−→
K→∞

0,

which confirms our claim. As for a normalized version of (17), it follows from (35) by noticing that
∥∥∥∥
∑

k≥1

(akC̃k + bkS̃k)
∥∥∥∥

2

L2[0,1]

− (‖a‖22 + ‖b‖22) =

∥∥∥∥
∑

k≥1

akC̃k
∥∥∥∥

2

L2[0,1]

− ‖a‖22 +

∥∥∥∥
∑

k≥1

bkS̃k
∥∥∥∥

2

L2[0,1]

− ‖b‖22,
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combined with the observation that
∣∣∣∣
∥∥∥∥
∑

k≥1

akC̃k
∥∥∥∥

2

L2[0,1]

− ‖a‖22
∣∣∣∣ =

∣∣∣∣
∑

j≥1

(∑

k≥1

ak

〈
C̃k, cj

〉)2

− ‖a‖22
∣∣∣∣ =

∣∣∣∣
∑

j≥1

(TCa)2
j − ‖a‖22

∣∣∣∣

=
∣∣‖TCa‖22 − ‖a‖22

∣∣ =
∣∣〈(T ∗CTC − I)a, a〉

∣∣ ≤ 1

2
‖a‖22,

and the similar observation that

∣∣∣∣
∥∥∥∥
∑

k≥1

bkS̃k
∥∥∥∥

2

L2[0,1]

− ‖b‖22
∣∣∣∣ ≤

1

2
‖b‖22.

We deduce that a normalized version of (17) holds with constants c̃ = 1/2 and C̃ = 3/2, hence (17)
holds with c = 1/6 and C = 1/2.

It now remains to establish that the operators TCT ∗C and TST
∗
S are invertible, which we do by showing

that
‖TCT ∗C − I‖2→2 ≤ ρ and ‖TST ∗S − I‖2→2 ≤ ρ (36)

for some constant ρ < 1. We concentrate on the case of TC , as the case of TS is handled similarly.
We first remark that the adjoint of TC is given, for any v ∈ `2(N) and j ∈ N, by

T ∗C (v)j =
∑

k≥1

vk〈C̃j , ck〉 = µ
∑

k≥1

vk
∑

m≥0

1

(2m+ 1)2
1{(2m+1)j=k}.

We then compute

‖T ∗C v‖22 = µ2
∑

j≥1

∑

k,`≥1

vkv`
∑

m,n≥0

1

(2m+ 1)2

1

(2n+ 1)2
1{(2m+1)j=k}1{(2n+1)j=`}

= Σ∗(=) + Σ∗(6=),

where Σ∗(=) represents the contribution to the sum when k and ` are equal and Σ∗(6=) represents the
contribution to the sum when k and ` are distinct. We notice that

Σ∗(=) =
∑

k≥1

v2
k µ

2
∑

m≥0

1

(2m+ 1)4

∑

j≥1

1{(2m+1)j=k}

satisfies, on the one hand,

Σ∗(=) ≤
∑

k≥1

v2
k µ

2
∑

m≥0

1

(2m+ 1)4
=
∑

k≥1

v2
k = ‖v‖22,

and on the other hand, by considering only the summand for m = 0 and j = k,

Σ∗(=) ≥
∑

k≥1

v2
k µ

2 = µ2‖v‖22.
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Moreover, we have
∣∣∣Σ∗(6=)

∣∣∣ ≤ µ2
∑

k,`≥1
k 6=`

|vk||v`|
∑

m,n≥0

1

(2m+ 1)2

1

(2n+ 1)2

∑

j≥1

1{(2m+1)j=k}1{(2n+1)j=`}

≤ µ2
∑

k,`≥1
k 6=`

|vk||v`|
∑

m,n≥0

1

(2m+ 1)2

1

(2n+ 1)2
1{(2m+1)`=(2n+1)k}

≤ µ2 π
4

192
‖v‖22 =

1

2
‖v‖22, (37)

where the last inequality used Lemma 9.1 again. Therefore, we obtain

|〈(TCT ∗C − I)v, v〉| =
∣∣‖T ∗C v‖22 − ‖v‖22

∣∣ =
∣∣∣(Σ∗(=) − ‖v‖22) + Σ∗(6=)

∣∣∣ ≤ (1− µ2)‖v‖22 +
1

2
‖v‖22.

Taking the maximum over all v ∈ `2(N) with ‖v‖2 = 1, we arrive at the result announced in (36)
with ρ := 1− µ2 + 1/2 ≤ 0.5145. The proof is now complete. �
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