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Abstract

It is shown in this note that one can decide whether an n-dimensional subspace of ℓN∞ is

isometrically isomorphic to ℓn∞ by testing a finite number of determinental inequalities. As a

byproduct, an elementary proof is provided for the fact that an n-dimensional subspace of ℓN∞
with projection constant equal to one must be isometrically isomorphic to ℓn∞.

Key words and phrases: One-complemented subspaces, Projection constants, Banach-Mazur dis-

tances.

AMS classification: 46B04, 46B20, 41A65.

Prelude. The purpose of this note is to settle, in a testable manner, the question raised in the title.

To arrive at our answer, an n-dimensional subspace V of ℓN∞ is better viewed as an m-codimensional

subspace of ℓN∞, N = m + n, written as V = {x ∈ RN : ⟨f1, x⟩ = · · · = ⟨fm, x⟩ = 0} for some

linearly independent f1, . . . , fm ∈ RN . In the simplest case m = 1, i.e., V = {f}⊥, it is known that

V ∼= ℓN−1
∞ if and only if ∥f∥1 ≤ 2∥f∥∞. This is a side-result of the determination by Blatter and

Cheney [3], way back in the 70’s, of a formula for the projection constant of hyperplanes in ℓN∞—we

will discuss projection constant soon. For the next simpler case m = 2, an answer was given in [2],

namely V ∼= ℓN−2
∞ if and only if there exist linearly independent f, g ∈ V ⊥ and distinct indices

k ̸= ℓ such that ∥f∥1 ≤ 2|fk| and ∥g∥1 ≤ 2|gℓ|. The answer, however, does not directly provide a

way to test whether V is isometrically isomorphic to ℓN−2
∞ . The instantiation to the case m = 2 of

our forthcoming result (Theorem 1) does. Precisely, given linearly independent f, g ∈ V ⊥, defining

∆1, . . . ,∆N ∈ ℓN∞ by ∆k = fkg − gkf , one has V ∼= ℓN−2
∞ if and only if

there exist indices k ̸= ℓ such that max{∥∆k∥1, ∥∆ℓ∥1} ≤ 2 |∆k
ℓ | (= 2 |∆ℓ

k|).

Thus, it is only required to test 2
(
N
2

)
presumptive inequalities to settle our question. It is important

to note that the above condition is intrinsic to the space V , in that it does not depend on the choice

of linearly independent linear vectors f and g in V ⊥: e.g. if f was replaced by cf + dg, c ̸= 0,

then each ∆k would be replaced by c∆k, which would not affect the status of the presumptive

inequalities.
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Notation. The entries of a vector x ∈ RN are marked with a subscript, so that x = [x1, . . . , xN ]⊤.

Superscripts are reserved for indexing sequences of vectors. For instance, a basis of the orthogonal

complement V ⊥ of an m-codimensional space V ⊆ RN is written as (f1, . . . , fm). In condensed

form, we write

F =

 f1 · · · fm

 ∈ RN×m.

Persisting with this convention, for a matrix A ∈ RN×m, its entry located at the intersection of the

ith row and the jth column is denoted by aji , its jth column is denoted by aj , and its ith row is

denoted by ai. More generally, the row-submatrix of A indexed by a set S ⊆ {1, . . . , N} is denoted
by AS . As such, for A,B ∈ RN×m, Cauchy–Binet formula reads

det(A⊤B) =
∑

|S|=m

det(AS) det(BS).

Banach-Mazur distances and projection constants. The so-called Banach–Mazur distance

between two finite-dimensional normed spaces V and W is defined1 as

d(V,W ) = min{∥T∥ ∥T−1∥ : T is an isomorphism from V to W} ≥ 1.

Thus, a tautological answer is the question of the title can be: “when d(V, ℓn∞) = 1”. Evidently,

this is not satisfying because there is no way (of which we are aware) of efficiently computing this

Banach–Mazur distance. As for the projection constant of a subspace V of ℓN∞, it is defined2 as

λ(V ) = min{∥P∥ : P is a projection from ℓN∞ onto V } ≥ 1.

It is well known that λ(V ) ≤ d(V, ℓn∞) and here is a sketched argument for completeness: consider a

minimizing isomorphism T : V → ℓn∞; by applying Hahn–Banach theorem componentwise, extend

it to T̃ : ℓN∞ → ℓn∞ while preserving its norm; then set P := T−1T̃ : ℓN∞ → V , which is a projection

onto V (since P (v) = T−1T (v) = v for all v ∈ V ) whose norm satisfies ∥P∥ ≤ ∥T−1∥ ∥T̃∥ =

∥T−1∥ ∥T∥ = d(V, ℓn∞); and conclude with λ(V ) ≤ ∥P∥ ≤ d(V, ℓn∞). As a result, d(V, ℓn∞) = 1

implies λ(V ) = 1. Interestingly, it is also known that λ(V ) = 1 conversely implies d(V, ℓn∞) = 1,

although none of the many proofs of this result3 are elementary. Our main result (Theorem 1)

actually provides an elementary proof of the equivalence λ(V ) = 1 ⇐⇒ d(V, ℓn∞) = 1, albeit with

the restriction that V is (isometrically isomorphic to) a subspace of ℓN∞. Thus, a better answer to

our question is: “when λ(V ) = 1”. Arguably, this is a satisfying answer because the projection

constant of a subspace of ℓN∞ can be computed by linear programming (see e.g. [4] for details)...

1The finite-dimensionality is not essential—it simply ensures that the infimum is indeed attained.
2Strictly speaking, this quantity is the relative projection constant λ(V, ℓN∞) of V—we are making implicit use of

the familiar fact that relative and absolute projection constants agree for subspaces of ℓN∞, see e.g. [4].
3The result brings up a possible quarrel between West and East claiming precedence: it is often attributed to

Nachbin [5], although it seems to have been announced earlier by Akilov [1], see the MathSciNet review MR0077897.
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except that most optimization solvers do not work in exact arithmetic, so truly testing the equality

λ(V ) = 1 could be problematic. In this sense, the answer we give to the question of the title is

“more” satisfying—it entails verifying a finite (but possibly large) number of inequalities which

can, on the face of it, be handled symbolically.

The main result. Without further ado, our awaited answer to the question “when is a subspace V

of ℓN∞ isometrically isomorphic to ℓn∞” materializes as item (i) of the theorem below. Its statement

involves an intrinsic basis (h(S)k, k ∈ S) of V ⊥ associated with a set S ⊆ {1, . . . , N} of size

m = codim(V ). Although it is constructed by invoking a fixed basis (f1, . . . , fm) of V ⊥, note that

it is actually independent of this fixed basis. Its defining formula is, for k ∈ S and i = 1, . . . , N ,

h(S)ki =
det(FS [rowk ← rowi])

det(FS)
, where F =

 f1 · · · fm

 ∈ RN×m.

On the one hand, the fact that the h(S)k, k ∈ S, belong to V ⊥ follows from a Laplace expansion

with respect to the kth row, yielding

h(S)ki =
1

det(FS)

m∑
j=1

(−1)k+jf j
i det(F

[1:m]\{j}
S\{k} ) for all i = 1, . . . , N.

In the particular case m = 2 and S = {k, ℓ}, we observe that h(S)k = ∆ℓ/∆ℓ
k, which leads to the

result mentioned in the prelude. On the other hand, the fact that the h(S)k, k ∈ S, are linearly

independent follows from

h(S)ki =

{
0 if i ∈ S is different from k,

1 if i ∈ S is identical with k.

As a consequence, any f ∈ V ⊥ is expressed as f =
∑

k∈S fkh(S)
k. In matrix form, this can simply

be written as the identity F = H(S)FS , to be used later.

Theorem 1. Given an m-codimensional subspace V of ℓN∞, the following statements are equivalent:

(i) there exists an index set S of size m such that ∥h(S)k∥1 ≤ 2 for all k ∈ S;

(ii) V is isometrically isomorphic to ℓn∞, n = N −m, i.e., d(V, ℓn∞) = 1;

(iii) the projection constant of V equals one, i.e., λ(V ) = 1.

The justification of these equivalences owes to the lemmas below. Indeed, the implication (i)⇒(ii)

follows from Lemma 2, which is relatively straightforward; the implication (ii)⇒(iii) is a consequence

of λ(V ) ≤ d(V, ℓn∞); and the implication (iii)⇒(i) follows from Lemma 3, which is the centerpiece

of this note.
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Lemma 2. For any index set S of size m such that det(FS) ̸= 0,

d(V, ℓn∞) ≤ max
{
1,max

k∈S
∥h(S)k∥1 − 1

}
.

Lemma 3. Let P be (the matrix of) a projection from ℓN∞ onto V with ∥P∥ = λ(V ). For any

index set S of size m such that det(FS) ̸= 0 and det(I − PS
S ) ̸= 0,

max
k∈S
∥h(S)k∥1 − 1 ≤ 1 + (λ(V )− 1)∥(I − PS

S )
−1∥.

Proof of Lemma 2. For v ∈ V = {f1, . . . , fm}⊥, the equality F⊤v = 0 yields F⊤
S vS + F⊤

ScvSc = 0,

i.e., vS = −F−⊤
S F⊤

ScvSc . This implies that

∥vS∥∞ ≤ ∥F−⊤
S F⊤

Sc∥ ∥vSc∥∞,

where the operator norm is transformed into

∥F−⊤
S F⊤

Sc∥ = max
k∈S

∑
i∈Sc

∣∣(F−⊤
S F⊤

Sc)ik
∣∣ = max

k∈S

∑
i∈Sc

∣∣(FScF−1
S )ki

∣∣ = max
k∈S

∑
i∈Sc

∣∣∣ m∑
j=1

(FSc)ji (F
−1
S )kj

∣∣∣
= max

k∈S

∑
i∈Sc

∣∣∣∣ m∑
j=1

f j
i

(−1)k+j det(F
[1:m]\{j}
S\{k} )

det(FS)

∣∣∣∣ = max
k∈S

∑
i∈Sc

∣∣h(S)ki ∣∣ = max
k∈S
∥h(S)kSc∥1.

It follows that, for any v ∈ V ,

∥v∥∞ = max{∥vSc∥∞, ∥vS∥∞} ≤ max
{
1,max

k∈S
∥h(S)kSc∥1

}
∥vSc∥∞.

Since ∥vSc∥∞ ≤ ∥v∥∞ also holds for any v ∈ V , we deduce that

d(V, ℓN−m
∞ ) ≤ max

{
1,max

k∈S
∥h(S)kSc∥1

}
.

The announced form of the result makes use ∥h(S)kSc∥1 = ∥h(S)k∥1−∥h(S)kS∥1 = ∥h(S)k∥1−1.

Proof of Lemma 3. Let P be a (minimal) projection from ℓN∞ onto V . Since I − P vanishes on

V = {f1, . . . , fm}⊥, there exist y1, . . . , ym ∈ RN such that (I−P )x =
∑m

i=1⟨f i, x⟩yi for all x ∈ RN .

Then, in view of Px ∈ V for all x ∈ RN , we have 0 = ⟨f j , Px⟩ = ⟨f j , x⟩ −
∑m

i=1⟨f i, x⟩⟨f j , yi⟩ for
all j = 1, . . . ,m. This forces ⟨f j , yi⟩ = δi,j for all i, j = 1, . . . ,m. All in all, the projection P can

be expressed, for any x ∈ RN , as

Px = x−
m∑
i=1

⟨f i, x⟩yi, where y1, . . . , ym ∈ RN satisfy ⟨f j , yi⟩ = δi,j .

In a more condensed matrix form, this reads

P = IN − Y F⊤ where Y ∈ RN×m satisfies F⊤Y = Im.
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Relatively to another basis (g1, . . . , gm) of V ⊥, written as G = FM for some invertible matrix

M ∈ Rm×m, we have

P = IN − ZG⊤ where Z = YM−⊤ ∈ RN×m satisfies G⊤Z = Im.

In view of
∑

|S|=m det(FS) det(YS) = 1, which stems from Cauchy–Binet formula, we can find an

index set S such that not only det(FS) ̸= 0 but also det(YS) ̸= 0. The former is needed in the

definition of the h(S)k, k ∈ S, and the latter will be needed soon. Fixing this index set S from

now on, we take (g1, . . . , gm) to be the basis (hk, k ∈ S)—dropping the dependence on S for ease

of notation. The matrices G, Z, and P thus take the form

H =

[
Im

HSc

]
, Z =

[
ZS

ZSc

]
, P = IN −

[
ZS ZSH

⊤
Sc

ZSc ZScH⊤
Sc

]
.

From this expression of P , it follows that

∥P∥ = max
i=1,...,N

N∑
j=1

|P j
i | ≥ max

i∈S

(
|1− Zi

i |+
∑

j∈S\{i}

|Zj
i |+

∑
j∈Sc

|(ZSH
⊤
Sc)

j
i |
)

≥ max
i∈S

(
1− |Zi

i |+
∑

j∈S\{i}

|Zj
i |+

∑
j∈Sc

|(ZSH
⊤
Sc)

j
i |
)
.

Therefore, for any i ∈ S, we obtain after some rearrangement

∥P∥ − 1 + αi ≥ βi, where αi := |Zi
i | −

∑
j∈S\{i}

|Zj
i | and βi :=

∑
j∈Sc

|(ZSH
⊤
Sc)

j
i |.

For any c ∈ RS , we observe on the one hand that∑
i∈S

βi|ci| =
∑
j∈Sc

∑
i∈S
|(ZSH

⊤
Sc)

j
i | |ci| ≥

∑
j∈Sc

∣∣∣∑
i∈S

(HScZ⊤
S )ijci

∣∣∣ = ∑
j∈Sc

∣∣(HScZ⊤
S c)j

∣∣,
and on the other hand that∑

i∈S
αi|ci| =

∑
i∈S
|Zi

i | |ci| −
∑
i,j∈S
i ̸=j

|Zj
i | |ci| =

∑
j∈S
|Zj

j | |cj | −
∑
i,j∈S
i ̸=j

|Zj
i | |ci|

=
∑
j∈S

(
|Zj

j | |cj | −
∑

i∈S\{j}

|Zj
i | |ci|

)
≤

∑
j∈S

∣∣∣∑
i∈S

Zj
i ci

∣∣∣ = ∑
j∈S

∣∣(Z⊤
S c)j

∣∣.
We consequently derive that, for any c ∈ RS ,(

∥P∥ − 1
)∑
i∈S
|ci|+

∑
j∈S

∣∣(Z⊤
S c)j

∣∣ ≥ ∑
j∈Sc

∣∣(HScZ⊤
S c)j

∣∣.
At this point, we need the specificity of the index set S to ensure that the matrix ZS is invertible.

This holds true thanks to the identity F = HFS , i.e., H = FM with M = F−1
S , which implies that
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Z = YM−⊤ = Y F⊤
S , so ZS = YSF

⊤
S is invertible as the product of two invertible matrices. Hence,

for any ℓ ∈ S, we can make the choice c = Z−⊤
S hℓS , for which ci = (Z−1

S )iℓ and Z⊤
S c = hℓS = δℓ, to

arrive at (
∥P∥ − 1

)∑
i∈S

∣∣(Z−1
S )iℓ

∣∣+ 1 ≥
∑
j∈Sc

∣∣hℓj∣∣.
Restoring the dependence on S, we have shown that there exists an index set S (any S such that

det(FS) ̸= 0 and det(YS) ̸= 0 is suitable) such that

max
ℓ∈S
∥h(S)ℓSc∥1 ≤ 1 +

(
∥P∥ − 1

)
max
ℓ∈S

∑
i∈S

∣∣(Z−1
S )iℓ

∣∣.
Taking into account that ∥P∥ = λ(V ) for a minimal projection, recognizing that the last maximum

is ∥Z−1
S ∥, and identifying ZS with I−PS

S , as apparent from the block-representation of P , completes

the argument.

References

[1] Akilov, G. P. (1947). On the extension of linear operations. Doklady Akad. Nauk SSSR (N.S.),

57, 643–646.

[2] Baronti, M., Papini, P. (1991). Norm-one projections onto subspaces of finite codimension in

ℓ1 and c0. Periodica Mathematica Hungarica, 22, 161–174.

[3] Blatter, J., Cheney, E. W. (1974). Minimal projections on hyperplanes in sequence spaces.

Annali di Matematica Pura ed Applicata, 101, 215–227.

[4] Foucart, S., Skrzypek, L. (202x). Minimal projections: from classical theory to modern devel-

opments. Surveys in Approximation Theory. In preparation.

[5] Nachbin, L. (1950). A theorem of the Hahn–Banach type for linear transformations. Transac-

tions of the American Mathematical Society, 68(1), 28–46.

6


